Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations (eBook)
VIII, 231 Seiten
Springer New York (Verlag)
978-0-387-87809-6 (ISBN)
A large number of physical phenomena are modeled by nonlinear partial
differential equations, subject to appropriate initial/ boundary conditions; these
equations, in general, do not admit exact solution. The present monograph gives
constructive mathematical techniques which bring out large time behavior of
solutions of these model equations. These approaches, in conjunction with modern
computational methods, help solve physical problems in a satisfactory manner. The
asymptotic methods dealt with here include self-similarity, balancing argument,
and matched asymptotic expansions. The physical models discussed in some detail
here relate to porous media equation, heat equation with absorption, generalized
Fisher's equation, Burgers equation and its generalizations. A chapter each is
devoted to nonlinear diffusion and fluid mechanics. The present book will be found
useful by applied mathematicians, physicists, engineers and biologists, and would
considerably help understand diverse natural phenomena.
A large number of physical phenomena are modeled by nonlinear partialdifferential equations, subject to appropriate initial/ boundary conditions; theseequations, in general, do not admit exact solution. The present monograph givesconstructive mathematical techniques which bring out large time behavior ofsolutions of these model equations. These approaches, in conjunction with moderncomputational methods, help solve physical problems in a satisfactory manner. Theasymptotic methods dealt with here include self-similarity, balancing argument,and matched asymptotic expansions. The physical models discussed in some detailhere relate to porous media equation, heat equation with absorption, generalizedFisher's equation, Burgers equation and its generalizations. A chapter each isdevoted to nonlinear diffusion and fluid mechanics. The present book will be founduseful by applied mathematicians, physicists, engineers and biologists, and wouldconsiderably help understand diverse natural phenomena.
Preface 5
Contents 6
1 Introduction 8
References 13
2 Large Time Asymptotics for Solutions of Nonlinear First-Order Partial Differential Equations 15
2.1 Introduction 15
2.2 First-order nonlinear partial differential equations -- Someexamples 16
2.3 Decay estimates for solutions of nonlinear first-order partial differential equations 27
2.4 Conclusions 37
References 38
3 Large Time Asymptotic Analysis of Some Nonlinear Parabolic Equations -- Some Constructive Approaches 39
3.1 Introduction 39
3.2 Travelling waves as asymptotics of solutions of initial value problems -- The Burgers equation 40
3.3 Profile at infinity -- Initial boundary value problem for Burgers equation 44
3.4 Travelling waves describing flow in a porous medium 53
3.5 Evolution of a stable profile describing cross-field diffusionin toroidal multiple plasma 62
3.6 Asymptotic solutions describing fast nonlinear diffusion 69
3.7 Large time asymptotic behaviour of periodic solutions of some generalised Burgers equations 80
3.8 Asymptotic behaviour of some generalised Burgers equations via balancing argument 88
3.9 Evolution of travelling waves in generalised Fisher's equations via matched asymptotic expansions 112
3.10 Periodic travelling wave solutions in reaction--diffusion systems 121
3.11 Conclusions 128
References 130
4 Self-similar Solutions as Large Time Asymptotics for Some Nonlinear Parabolic Equations 134
4.1 Introduction 134
4.2 Self-similar solutions as large time asymptotics for linear heat equation 137
4.3 Self-similar solutions as intermediate asymptotics for filtration--absorption model 141
4.4 Analysis of a class of similarity solutions of the porous media equation 150
4.5 Similarity solutions of nonlinear heat conduction problems as large time asymptotics 159
4.6 Large time asymptotics for solutions of the porous mediaequation 166
4.7 Large time behaviour of solutions of a dissipative semilinear heat equation 175
4.8 Large time asymptotics for the solutions of a very fast diffusion equation 181
4.9 Conclusions 189
References 191
5 Asymptotics in Fluid Mechanics 194
5.1 Introduction 194
5.2 Strong explosion in a power law density medium -- Self-similar solutions of first and second kind 195
5.3 Self-similar solutions for collapsing cavities 204
5.4 Large time behaviour of solutions of compressible flow equations with damping 208
5.5 Large time behaviour of solutions of unsteady boundary layer equations for an incompressible fluid 216
5.6 Asymptotic behaviour of velocity profiles in Prandtl boundary layer theory 224
5.7 Conclusions 235
References 235
Index 238
Erscheint lt. Verlag | 29.10.2009 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | VIII, 231 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik | |
Schlagworte | asymptotic • Differential • Equations • fluid mechanics • linear optimization • Nonlinear • Partial • partial differential equation • Partial differential equations • Porous Media |
ISBN-10 | 0-387-87809-2 / 0387878092 |
ISBN-13 | 978-0-387-87809-6 / 9780387878096 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich