Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Electrochemistry of Metal Chalcogenides (eBook)

eBook Download: PDF
2010 | 2010
XII, 358 Seiten
Springer Berlin (Verlag)
978-3-642-03967-6 (ISBN)

Lese- und Medienproben

Electrochemistry of Metal Chalcogenides - Mirtat Bouroushian
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications.

Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion.

Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.

Preface 6
Contents 8
Introduction 12
1 Chalcogens and Metal Chalcogenides 14
1.1 The Chalcogens 14
1.1.1 History and Occurrence 15
1.1.2 Production and Uses 17
1.1.3 Allotropy -- States of Matter 20
1.1.4 Chemical Properties and Compounds 23
1.1.4.1 Hydrides 25
1.1.4.2 Oxides and Oxoacids 25
1.1.4.3 Thio- and Seleno-sulfates 27
1.1.4.4 Polychalcogenide Ions 28
1.2 The Metal Chalcogenides 29
1.2.1 Solids, Complexes, and Clusters 29
1.2.2 Common Solid Structures 32
1.2.3 Ternary Compounds and Alloys 35
1.2.4 Intercalation Phases 37
1.2.5 Chalcogenide Glasses 37
1.2.6 Materials Synthesis 38
1.2.7 An Account of the Periodic Table 41
1.2.7.1 Group IA (1). Lithium, Sodium, Potassium, Rubidium, Cesium 41
1.2.7.2 Group IIA (2). Beryllium, Magnesium, Calcium, Strontium, Barium 42
1.2.7.3 Group IIIA (3). Scandium, Yttrium, Lanthanoids, Actinoids 42
1.2.7.4 Group IVA (4). Titanium, Zirconium, Hafnium 45
1.2.7.5 Group VA (5). Vanadium, Niobium, Tantalum 46
1.2.7.6 Group VIA (6). Chromium, Molybdenum, Tungsten 48
1.2.7.7 Group VIIA (7). Manganese, Technetium, Rhenium 50
1.2.7.8 Group VIII (8--10). Iron, Cobalt, Nickel 51
1.2.7.9 Group VIII (8--10). Platinum Group Metals (Ru, Os, Rh, Ir, Pd, Pt) 53
1.2.7.10 Group IB (11). Copper, Silver, Gold 54
1.2.7.11 Group IIB (12). Zinc, Cadmium, Mercury 58
1.2.7.12 Group IIIB (13). Boron, Aluminum, Gallium, Indium, Thallium 61
1.2.7.13 Group IVB (14). Germanium, Tin, Lead 62
1.2.7.14 Group VB (15). Antimony, Bismuth 64
General References 65
2 Electrochemistry of the Chalcogens 70
2.1 General References 70
2.1.1 Tables of Aqueous Standard and Formal Potentials 72
2.1.2 Pourbaix Diagram for Sulfur--Water 75
2.1.3 Pourbaix Diagram for Selenium--Water 77
2.1.4 Pourbaix Diagram for Tellurium--Water 78
2.2 General Discussion 80
2.2.1 Sulfur 80
2.2.2 Selenium 82
2.2.3 Tellurium 84
References 86
3 Electrochemical Preparations I (Conventional Coatings and Structures) 89
3.1 Basic Principles and Illustrations 89
3.1.1 Cathodic Electrodeposition 90
3.1.2 Anodization and Other Techniques 96
3.1.3 Pourbaix Diagrams 97
3.1.4 Nucleation and Growth 98
3.2 Binary Compounds and Related Ternaries 100
3.2.1 Cadmium Sulfide (CdS) 100
3.2.2 Cadmium Selenide (CdSe) 106
3.2.3 Cadmium Telluride (CdTe) 110
3.2.4 Zinc Sulfide (ZnS) 115
3.2.5 Zinc Selenide (ZnSe) 116
3.2.6 Zinc Telluride (ZnTe) 117
3.2.7 Mercury Chalcogenides 118
3.2.8 Pseudobinary II--VIx --VI1--x and II1--x--IIx --VI Phases 118
3.2.9 Molybdenum and Tungsten Chalcogenides 122
3.2.10 Copper Chalcogenides 124
3.2.11 Silver Chalcogenides 125
3.2.12 Indium Chalcogenides 126
3.2.13 Copper--Indium Dichalcogenides 127
3.2.14 Manganese and Rhenium Chalcogenides 131
3.2.15 Iron Chalcogenides 132
3.2.16 Tin Chalcogenides 133
3.2.17 Lead Chalcogenides 136
3.2.18 Bismuth and Antimony Chalcogenides 140
3.2.19 Rare Earth Chalcogenides 143
3.3 Addendum 144
3.3.1 Chemical Bath Deposition 144
3.3.2 Electrodeposited CdTe Solar Cells 149
References 151
4 Electrochemical Preparations II (Non-conventional) 164
4.1 General 164
4.2 Epitaxial Films and Superstructures 165
4.2.1 Single-Step Epitaxy on Semiconductor Substrates 166
4.2.2 Electrochemical Atomic Layer Epitaxy 173
4.2.3 Superstructures--Multilayers 180
4.3 Atomic Layer Epitaxy and UPD Revisited 183
4.4 Electrodeposition of Nanostructures: Size-Quantized Films on Metal Substrates 193
4.5 Directed Electrosynthesis 198
4.5.1 Porous Templates 200
4.5.2 Templated and Free-Standing Nanowires and other Forms 202
4.5.3 Electrochemical Step Edge Decoration 207
References 209
5 Photoelectrochemistry and Applications 218
5.1 General 218
5.2 Photoelectrochemical Properties 219
5.2.1 Redox and Surface Chemistry vs. Electrode Decomposition 221
5.2.2 Energetic Considerations 224
5.2.3 Cadmium Chalcogenides 227
5.2.3.1 Single-Crystal Photoelectrodes -- PEC Fabrication and Properties 227
5.2.3.2 Single-Crystal Photoelectrodes -- A Closer Look into Interfacial Electrochemistry 234
5.2.3.3 Polycrystalline Photoelectrodes 240
5.2.4 A Note on Multilayer Structures 244
5.2.5 Zinc Chalcogenides 246
5.2.6 Layered Transition Metal Chalcogenides 249
5.2.6.1 Surface Anisotropy Effect 258
5.2.7 Iron Sulfides 259
5.2.8 Chalcopyrites 262
5.2.9 Some Chalcogenides of p-Block Metals 266
5.2.9.1 Gallium and Indium Chalcogenides 267
5.2.9.2 Tin Sulfides 270
5.2.9.3 Lead Chalcogenides 272
5.2.9.4 Bismuth Sulfide 273
5.3 Semiconductor Photocatalysis 274
5.3.1 Colloidal Systems 276
5.3.2 Solar Detoxification--CO2 Photoreduction 279
5.3.3 Photocatalytic Decomposition of Water 281
5.3.3.1 Cadmium Sulfide and Related Photocatalysts 286
5.3.3.2 Transition Metal Dichalcogenides and Related Photocatalysts 290
5.4 Sensitized Solar Cells 293
References 303
6 Electrochemical Processes and Technology 320
6.1 Oxygen Reduction Reaction ORR 320
6.1.1 General 320
6.1.2 Pt-Free Chalcogenide Catalysts 322
6.1.3 Methanol Oxidation 328
6.1.4 ODP Applications (Oxygen-Depolarized Electrolysis of HCl) 331
6.2 Electrochemical Energy Storage 332
6.2.1 Intercalation in Chalcogenides 333
6.2.2 Principles of the (Thin Film) Rechargeable Lithium Battery 335
6.2.3 Chalcogenide Cathodes for Rechargeable Lithium Cells 337
6.2.4 Mg-Ion Intercalation 340
6.2.5 High-Power Batteries and Related Types 341
6.2.5.1 Sulfur-based Cathode 341
6.2.5.2 Se- and Te-based Cathodes 345
6.2.5.3 Thermal Batteries 346
6.3 Ion-Selective Electrodes 346
6.3.1 Chalcogenide Glass Sensors 348
6.3.2 Biosensors 350
References 353
About the Editor 361
About the Author 363
Index 365
Preface 6
Introduction 12
1 Chalcogens and Metal Chalcogenides 14
1.1 The Chalcogens 14
1.1.1 History and Occurrence 15
1.1.2 Production and Uses 17
1.1.3 Allotropy -- States of Matter 20
1.1.4 Chemical Properties and Compounds 23
1.1.4.1 Hydrides 25
1.1.4.2 Oxides and Oxoacids 25
1.1.4.3 Thio- and Seleno-sulfates 27
1.1.4.4 Polychalcogenide Ions 28
1.2 The Metal Chalcogenides 29
1.2.1 Solids, Complexes, and Clusters 29
1.2.2 Common Solid Structures 32
1.2.3 Ternary Compounds and Alloys 35
1.2.4 Intercalation Phases 37
1.2.5 Chalcogenide Glasses 37
1.2.6 Materials Synthesis 38
1.2.7 An Account of the Periodic Table 41
1.2.7.1 Group IA (1). Lithium, Sodium, Potassium, Rubidium, Cesium 41
1.2.7.2 Group IIA (2). Beryllium, Magnesium, Calcium, Strontium, Barium 42
1.2.7.3 Group IIIA (3). Scandium, Yttrium, Lanthanoids, Actinoids 42
1.2.7.4 Group IVA (4). Titanium, Zirconium, Hafnium 45
1.2.7.5 Group VA (5). Vanadium, Niobium, Tantalum 46
1.2.7.6 Group VIA (6). Chromium, Molybdenum, Tungsten 48
1.2.7.7 Group VIIA (7). Manganese, Technetium, Rhenium 50
1.2.7.8 Group VIII (8--10). Iron, Cobalt, Nickel 51
1.2.7.9 Group VIII (8--10). Platinum Group Metals (Ru, Os, Rh, Ir, Pd, Pt) 53
1.2.7.10 Group IB (11). Copper, Silver, Gold 54
1.2.7.11 Group IIB (12). Zinc, Cadmium, Mercury 58
1.2.7.12 Group IIIB (13). Boron, Aluminum, Gallium, Indium, Thallium 61
1.2.7.13 Group IVB (14). Germanium, Tin, Lead 62
1.2.7.14 Group VB (15). Antimony, Bismuth 64
General References 65
2 Electrochemistry of the Chalcogens 70
2.1 General References 70
2.1.1 Tables of Aqueous Standard and Formal Potentials 72
2.1.2 Pourbaix Diagram for Sulfur--Water 75
2.1.3 Pourbaix Diagram for Selenium--Water 77
2.2 General Discussion 80
2.2.1 Sulfur 80
2.2.2 Selenium 82
2.2.3 Tellurium 84
References 86
3 Electrochemical Preparations I (Conventional Coatings and Structures) 89
3.1 Basic Principles and Illustrations 89
3.1.1 Cathodic Electrodeposition 90
3.1.2 Anodization and Other Techniques 96
3.1.3 Pourbaix Diagrams 97
3.1.4 Nucleation and Growth 98
3.2 Binary Compounds and Related Ternaries 100
3.2.1 Cadmium Sulfide (CdS) 100
3.2.2 Cadmium Selenide (CdSe) 106
3.2.3 Cadmium Telluride (CdTe) 110
3.2.4 Zinc Sulfide (ZnS) 115
3.2.5 Zinc Selenide (ZnSe) 116
3.2.6 Zinc Telluride (ZnTe) 117
3.2.7 Mercury Chalcogenides 118
3.2.8 Pseudobinary II--VI x --VI 1-- x and II 1-- x --II x --VI Phases 118
3.2.9 Molybdenum and Tungsten Chalcogenides 122
3.2.10 Copper Chalcogenides 124
3.2.11 Silver Chalcogenides 125
3.2.12 Indium Chalcogenides 126
3.2.13 Copper--Indium Dichalcogenides 127
3.2.14 Manganese and Rhenium Chalcogenides 131
3.2.15 Iron Chalcogenides 132
3.2.16 Tin Chalcogenides 133
3.2.17 Lead Chalcogenides 136
3.2.18 Bismuth and Antimony Chalcogenides 140
3.2.19 Rare Earth Chalcogenides 143
3.3 Addendum 144
3.3.1 Chemical Bath Deposition 144
3.3.2 Electrodeposited CdTe Solar Cells 149
References 151
4 Electrochemical Preparations II (Non-conventional) 164
4.1 General 164
4.2 Epitaxial Films and Superstructures 165
4.2.1 Single-Step Epitaxy on Semiconductor Substrates 166
4.2.2 Electrochemical Atomic Layer Epitaxy 173
4.2.3 Superstructures--Multilayers 180
4.3 Atomic Layer Epitaxy and UPD Revisited 183
4.4 Electrodeposition of Nanostructures: Size-Quantized Films on Metal Substrates 193
4.5 Directed Electrosynthesis 198
4.5.1 Porous Templates 200
4.5.2 Templated and Free-Standing Nanowires and other Forms 202
4.5.3 Electrochemical Step Edge Decoration 207
References 209
5 Photoelectrochemistry and Applications 218
5.1 General 218
5.2 Photoelectrochemical Properties 219
5.2.1 Redox and Surface Chemistry vs. Electrode Decomposition 221
5.2.2 Energetic Considerations 224
5.2.3 Cadmium Chalcogenides 227
5.2.3.1 Single-Crystal Photoelectrodes -- PEC Fabrication and Properties 227
5.2.3.2 Single-Crystal Photoelectrodes -- A Closer Look into Interfacial Electrochemistry 234
5.2.3.3 Polycrystalline Photoelectrodes 240
5.2.4 A Note on Multilayer Structures 244
5.2.5 Zinc Chalcogenides 246
5.2.6 Layered Transition Metal Chalcogenides 249
5.2.6.1 Surface Anisotropy Effect 258
5.2.7 Iron Sulfides 259
5.2.8 Chalcopyrites 262
5.2.9 Some Chalcogenides of p-Block Metals 266
5.2.9.1 Gallium and Indium Chalcogenides 267
5.2.9.2 Tin Sulfides 270
5.2.9.3 Lead Chalcogenides 272
5.2.9.4 Bismuth Sulfide 273
5.3 Semiconductor Photocatalysis 274
5.3.1 Colloidal Systems 276
5.3.2 Solar Detoxification 0 CO 2 Photoreduction 279
5.3.3 Photocatalytic Decomposition of Water 281
5.3.3.1 Cadmium Sulfide and Related Photocatalysts 286
5.3.3.2 Transition Metal Dichalcogenides and Related Photocatalysts 290
5.4 Sensitized Solar Cells 293
References 303
6 Electrochemical Processes and Technology 320
6.1 Oxygen Reduction Reaction ORR 320
6.1.1 General 320
6.1.2 Pt-Free Chalcogenide Catalysts 322
6.1.3 Methanol Oxidation 328
6.1.4 ODP Applications (Oxygen-Depolarized Electrolysis of HCl) 331
6.2 Electrochemical Energy Storage 332
6.2.1 Intercalation in Chalcogenides 333
6.2.2 Principles of the (Thin Film) Rechargeable Lithium Battery 335
6.2.3 Chalcogenide Cathodes for Rechargeable Lithium Cells 337
6.2.4 Mg-Ion Intercalation 340
6.2.5 High-Power Batteries and Related Types 341
6.2.5.1 Sulfur-based Cathode 341
6.2.5.2 Se- and Te-based Cathodes 345
6.2.5.3 Thermal Batteries 346
6.3 Ion-Selective Electrodes 346
6.3.1 Chalcogenide Glass Sensors 348
6.3.2 Biosensors 350
References 353
About the Editor 361
About the Author 363
Index 365

"Chapter 2 Electrochemistry of the Chalcogens (S. 57)

2.1 General References

Because of their multiple oxidation states, the chalcogens, particularly sulfur, can engage in numerous redox couples participating in acid–base, oxidation–reduction, precipitation, and complexation equilibria. In the anion electrochemical series, sulfur, being the less noble element compared to its heavier congeners, occupies an intermediate position between iodine and selenium [(+)F, Cl, Br, I, S, Se, Te(–)]. Selenium, regarded as a metalloid, is a relatively noble element.

Tellurium is rather an amphoteric element: it can enter into solution in the form of both cations and anions. Regarded as a metal, i.e., with respect to its cations, tellurium occupies a position between copper and mercury. Regarded as a metalloid, i.e., with respect to its anions, it is located on the extreme right of the above series. A comprehensive survey of the classical electrochemical facts for sulfur, selenium, and tellurium, as documented until about 1970, can be found in the reviews of Zhdanov [1], wherefrom we cite the lists of standard and formal potentials for aqueous solutions, in Tables 2.1, 2.2, and 2.3, respectively. Many of these potentials have been calculated thermodynamically since the experimental determinations are few.

The listed data are largely drawn from the monograph by Pourbaix (below), and the interested reader should validate the measurement conditions for the indicated potentials or the scatter in their values (not given here in detail). In these tables, the redox systems are assorted by decreasing formal valency of chalcogen in the oxidized state, while at a given valency of the oxidized state they appear in the order of decreasing valency of chalcogen in the reduced state.

Latimer [2] has compiled useful aqueous redox transition potential diagrams (reproduced also in Zhdanov’s monographs) that are convenient as a quick guide in practical problems and for perceiving the oxidation–reduction properties of some chalcogen hydride and oxychalcogenide species. Standard potentials of chalcogens in non-aqueous media are generally not known, at least in a systematic manner. A standard approach for the theoretical presentation of electrochemical equilibria is the use of Pourbaix, or potential–pH predominance area diagrams, which incorporate chemical and electrochemical thermodynamics simultaneously in a straightforward manner."

Erscheint lt. Verlag 23.4.2010
Reihe/Serie Monographs in Electrochemistry
Monographs in Electrochemistry
Zusatzinfo XII, 358 p. 69 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte catalysis • Chalcogenide Compounds and Alloys • Electrochemical Synthesis • Electrochemical Technology • Electrochemistry • fuel cell • Microstructure Control • photocatalysis
ISBN-10 3-642-03967-7 / 3642039677
ISBN-13 978-3-642-03967-6 / 9783642039676
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 53,65
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 58,55