Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Multiphase Flow Dynamics 2 (eBook)

Thermal and Mechanical Interactions
eBook Download: PDF
2005 | 2nd ed. 2005
XX, 699 Seiten
Springer Berlin (Verlag)
978-3-540-26830-7 (ISBN)

Lese- und Medienproben

Multiphase Flow Dynamics 2 - Nikolay Ivanov Kolev
Systemvoraussetzungen
169,99 inkl. MwSt
(CHF 165,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this book contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. This book provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the mechanical and thermal interactions in multiphase dynamics are provided. This third edition includes various updates, extensions, improvements and corrections.

SUMMARY 6
Table of Contents 10
1 Flow regime transition criteria 20
1.1 Introduction 20
1.2 Pool flow 22
1.3 Adiabatic flows 25
1.4. Heated channels 37
1.5. Porous media 38
1.6 Particles in film boiling 39
1.7 Rod bundles 40
Nomenclature 42
References 44
2 Drag forces 46
2.1 Introduction 46
2.2 Drag coefficient for single bubble 47
2.3 Family of particles in continuum 51
2.4 Droplets-gas 55
2.5. Solid particles-gas in presence of liquid. Solid particles-liquid in presence of a gas 57
2.6. Annular flow 68
2.7. Inverted annular flow 74
2.8. Stratified flow in horizontal or inclined rectangular channels 75
2.9. Stratified flow in horizontal or inclined pipes 79
Nomenclature 84
References 87
3. Friction pressure drop 90
3.1 Introduction 90
3.2 Single-phase flow 90
3.3 Two-phase flow 93
3.4 Three-dimensional flow in a porous structure 98
3.5 Heated channels 99
3.6 Three-phase flow 101
Nomenclature 103
References 105
4. Diffusion velocities for algebraic slip models 107
4.1 Introduction 107
4.2 Drag as a function of the relative velocity 108
4.3 Two velocity fields 113
4.4 Slip models 140
4.5 Three velocity fields – annular dispersed flow 142
4.6 Three-phase flow 143
Nomenclature 146
References 148
5. Entrainment in annular two-phase flow 151
5.1 Introduction 151
5.2 Some basics 152
5.3 Correlations 153
5.4 Entrainment increase in boiling channels 161
5.5 Size of the entrained droplets 162
Nomenclature 164
References 167
6. Deposition in annular two-phase flow 170
6.1 Introduction 170
6.2 Analogy between heat and mass transfer 170
6.3 Fluctuation mechanism in the boundary layer 172
6.4 Zaichik's theory 173
6.5 Deposition correlations 174
Nomenclature 178
References 181
7. Introduction to fragmentation and coalescence 183
7.1 Introduction 183
7.2 General remarks about fragmentation 186
7.3 General remarks about coalescence 187
7.4 Superposition of different droplet coalescence mechanisms 194
7.5 Superposition of different bubble coalescence mechanisms 195
7.6 General remarks about particle size formation in pipes 196
Nomenclature 200
References 202
8. Acceleration induced droplet and bubble fragmentation 204
8.1 Critical Weber number 204
8.2 Fragmentation modes 215
8.3 Relative velocity after fragmentation 218
8.4 Breakup time 222
8.5 Particle production rate correlations 229
8.6 Droplets production due to highly energetic collisions 239
8.7 Acceleration induced bubble fragmentation 241
Nomenclature 245
References 247
9. Turbulence induced particle fragmentation and coalescence 251
9.1. Homogeneous turbulence characteristics 251
9.2 Reaction of a particle to the acceleration of thesurrounding continuum 255
9.3 Reaction of particle entrained inside the turbulent vortex – inertial range 257
9.4 Stability criterion for bubbles in continuum 258
9.5 Turbulence energy dissipation due to the wall friction 262
9.6 Turbulence energy dissipation due to the relative motion 264
9.7 Bubble coalescence probability 266
9.8 Coalescence probability of small droplets 271
Nomenclature 272
References 274
10. Liquid and gas jet disintegration 276
10.1 Liquid jet disintegration in pools 276
10.2 Boundary of different fragmentation mechanisms 279
10.3 Size of the ligaments 281
10.4 Unbounded instability controlling jet fragmentation 282
10.5. Jet erosion by high velocity gas environment 290
10.6. Jet fragmentation in pipes 292
10.7. Gas jet disintegration in pools 293
Nomenclature 296
References 299
11. Fragmentation of melt in coolant 301
11.1 Introduction 301
11.2 Vapor thickness in film boiling 303
11.3 Amount of melt surrounded by continuous water 305
11.4 Thermo-mechanical fragmentation of liquid metal in water 306
11.5 Particle production rate during the thermal fragmentation 334
11.6 Tang’s thermal fragmentation model 336
11.7 Yuen’s thermal fragmentation model 339
11.8 Oxidation 339
11.9 Superposition of thermal fragmentation 340
Nomenclature 343
References 346
12. Nucleation in liquids 352
12.1 Introduction 352
12.2 Nucleation energy, equation of Kelvin and Laplace 353
12.3 Nucleus capable to grow 355
12.4 Some useful forms of the Clausius-Clapeyron equation, measures of superheating 356
12.5 Nucleation kinetics 359
12.6 Maximum superheat 367
12.7 Critical mass flow rate in short pipes, orifices and nozzles 371
12.8 Nucleation in the presence of non-condensable gases 371
12.9 Activated nucleation site density – state of the art 373
12.10. Conclusions and recommendations 379
Nomenclature 380
References 382
13. Bubble growth in superheated liquid 385
13.1 Introduction 385
13.2 The thermally controlled bubble growth 386
13.3 The Mikic solution 389
13.4 How to compute the mass source terms for the averaged conservation equations? 392
13.5. Superheated steam 395
13.6 Diffusion controlled evaporation into mixture of gases inside the bubble 396
13.7 Conclusions 397
Nomenclature 397
References 400
Appendix 402
14. Condensation of a pure steam bubble in a subcooled liquid 408
14.1 Introduction 408
14.2 Stagnant bubble 408
14.3 Moving bubble 410
14.4 Non-averaged source terms 415
14.5 Averaged source terms 416
14.6 Change of the bubble number density due to condensation 418
14.7 Pure steam bubble drifting in turbulent continuous liquid 419
14.8 Condensation from a gas mixture in bubbles surrounded by subcooled liquid 422
Nomenclature 424
References 428
15. Bubble departure diameter 430
15.1 How accurately can we predict bubble departure diameter for boiling? 430
15.2 Model development 432
15.3 Comparison with experimental data 438
15.4 Significance 441
15.5 Summary and conclusions 442
Nomenclature 443
References 444
16. How accurately can we predict nucleate boiling? 447
16.1 Introduction 447
16.2 New phenomenological model for nucleate pool boiling 452
16.3 Data comparison 456
16.4 Systematic inspection of all the used hypotheses 460
16.5 Significance 461
16.6 Conclusions 461
Nomenclature 462
17. Heterogeneous nucleation and flashing in adiabatic pipes 475
17.1 Introduction 475
17.2 Bubbles generated due to nucleation at the wall 476
17.3 Bubble growth in the bulk 477
17.4 Bubble fragmentation and coalescence 478
17.5 Film flashing bubble generation in adiabatic pipe flow 479
17.6 Verification of the model 481
Nomenclature 492
References 494
18. Boiling of subcooled liquid 496
18.1 Introduction 496
18.2 Initiation of visible boiling on the heated surface 496
18.3 Local evaporation and condensation 497
Nomenclature 502
References 504
19. Natural convection film boiling 505
19.1 Minimum film boiling temperature 505
19.2 Film boiling in horizontal upwards-oriented plates 506
19.3 Horizontal cylinder 508
19.4 Sphere 508
Nomenclature 508
References 510
20. Forced convection boiling 511
20.1 Convective boiling of saturated liquid 511
20.2 Forced convection film boiling 513
20.3 Transition boiling 518
20.4 Critical heat flux 519
Nomenclature 527
References 529
21. Film boiling on vertical plates and spheres 532
21.1 Plate 532
21.2 Sphere 552
Nomenclature 566
References 569
Appendix 21.1 Natural convection at vertical plate 572
Appendix 21.2 Predominant forced convection only at vertical plate 572
22. Liquid droplets 574
22.1 Spontaneous condensation of pure subcooled steam – nucleation 574
22.2 Heat transfer across droplet interface without mass transfer 583
22.3 Direct contact condensation of pure steam on subcooled droplet 590
22.4 Spontaneous flashing of superheated droplet 592
22.5 Evaporation of saturated droplets in superheated gas 596
22.6 Droplet evaporation in gas mixture 599
Nomenclature 605
References 606
23. Heat and mass transfer at the film-gas interface 609
23.1 Geometrical film-gas characteristics 609
23.2 Convective heat transfer 611
23.3 Spontaneous flashing of superheated film 625
23.4 Evaporation of saturated film in superheated gas 626
23.5 Condensation of pure steam on subcooled film 627
23.6 Evaporation or condensation in presence of non-condensable gases 628
Nomenclature 630
References 633
24. Condensation at cooled walls 635
24.1 Pure steam condensation 635
24.2. Condensation from forced convection two-phase flow at liquid film 638
24.3 Steam condensation from mixture containing non-condensing gases 640
Nomenclature 644
References 646
25. Discrete ordinate method for radiation transport in multi-phase computer codes 648
25.1 Introduction 648
25.2 Discrete ordinate method 650
25.3 Material properties 661
25.4 Averaged properties for some particular cases occurring in melt-water interaction 666

Erscheint lt. Verlag 15.8.2005
Zusatzinfo XX, 699 p. 81 illus., 9 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Behavior • Complexity • Computer • convection • Dynamics • extension • fluid- and aerodynamics • Fluid Dynamics • multi-component mixtures • Multiphase dynamics • Multiphase Flow • three fluid mixtures • Turbulence
ISBN-10 3-540-26830-8 / 3540268308
ISBN-13 978-3-540-26830-7 / 9783540268307
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 24,30
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95