Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Stream Data Processing: A Quality of Service Perspective (eBook)

Modeling, Scheduling, Load Shedding, and Complex Event Processing
eBook Download: PDF
2009 | 2009
XXVI, 324 Seiten
Springer US (Verlag)
978-0-387-71003-7 (ISBN)

Lese- und Medienproben

Stream Data Processing: A Quality of Service Perspective - Sharma Chakravarthy, Qingchun Jiang
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The systems used to process data streams and provide for the needs of stream-based applications are Data Stream Management Systems (DSMSs).

This book presents a new paradigm to meet the needs of these applications, including a detailed discussion of the techniques proposed. Ii includes important aspects of a QoS-driven DSMS (Data Stream Management System) and introduces applications where a DSMS can be used and discusses needs beyond the stream processing model. It also discusses in detail the design and implementation of MavStream. This volume is primarily intended as a reference book for researchers and advanced-level students in computer science. It is also appropriate for practitioners in industry who are interested in developing applications.


In recent years, a new class of applications has come to the forefront { p- marily due to the advancement in our ability to collect data from multitudes of devices, and process them e ciently. These include homeland security - plications, sensor/pervasive computing applications, various kinds of mo- toring applications, and even traditional applications belonging to nancial, computer network management, and telecommunication domains. These - plications need to process data continuously (and as long as data is available) from one or more sources. The sequence of data items continuously gen- ated by sources is termed a data stream. Because of the possible never-ending nature of a data stream, the amount of data to be processed is likely to be unbounded. In addition, timely detection of interesting changes or patterns or aggregations over incoming data is critical for many of these applications. Furthermore, the data arrival rates may uctuate over a period of time and may be bursty at times. For most of these applications, Quality of Service (or QoS) requirements, such as response time, memory usage, and throughput are extremely important. These application requirements make it infeasible to simply load the incoming data streams into a persistent store and process them e ectively using currently available database management techniques.

Preface 7
Objectives 8
Intended Audience 9
Acknowledgements 9
How to Use the Book 11
Contents 13
List of Figures 19
List of Tables 22
List of Algorithms 23
1 INTRODUCTION 24
1.1 Paradigm Shift 26
1.2 Data Stream Applications 28
1.3 Book Organization 29
2 OVERVIEW OF DATA STREAM PROCESSING 31
2.1 Data Stream Characteristics 31
2.2 Data Stream Application Characteristics 32
2.3 Continuous Queries 34
2.4 Data Stream Management System Architecture 41
3 DSMS CHALLENGES 44
3.1 QoS-Related Challenges 44
3.2 Concise Overview of Book Chapters 48
4 LITERATURE REVIEW 53
4.1 Data Stream Management Systems 53
4.2 QoS-Related Issues 58
4.3 Complex Event Processing 61
4.4 Commercial and Open Source Stream and CEP Systems 67
5 MODELING CONTINUOUS QUERIES OVER DATA STREAMS 69
5.1 Continuous Query Processing 70
5.2 Problem Denition 74
5.3 Modeling Relational Operators 77
5.4 Modeling Continuous Queries 89
5.5 Intuitive Observations 102
5.6 Experimental Validation 105
5.7 Summary of Chapter 5 113
6 SCHEDULING STRATEGIES FOR CQs 114
6.1 Scheduling Model and Terminology 115
6.2 Impact of Scheduling Strategies on QoS 122
6.3 Novel Scheduling Strategies for CQs 124
6.4 Experimental Validation 145
6.5 Summary of Chapter 6 155
7 LOAD SHEDDING IN DATA STREAM MANAGEMENT SYSTEMS 156
7.1 The Load Shedding Problem 157
7.2 Integrating Load Shedders 159
7.3 Load Shedding Framework 162
7.4 Experimental Validation 177
7.5 Summary of Chapter 7 184
8 N F M: AN INTER-DOMAIN NETWORK FAULT MANAGEMENT SYSTEM 186
8.1 Network Fault Management Problem 187
8.2 Data Processing Challenges for Fault Management 189
8.3 Stream- and Event-Based N F M Architecture 192
8.4 Three-Phase Processing Model for N F M 197
8.5 Transactional Needs of Network Management Applications 203
8.6 Summary of Chapter 8 205
9 INTEGRATING STREAM AND COMPLEX EVENT PROCESSING 206
9.1 Motivation 207
9.2 Event Processing Model 210
9.3 Complex Event Vs. Stream Processing 214
9.4 MavEStream: An Integrated Architecture 219
9.5 Stream-Side Extensions 222
9.6 Event-Side Extensions 226
9.7 Summary of Chapter 9 232
10 MavStream: DEVELOPMENT OF A DSMS PROTOTYPE 234
10.1 MavStream Architecture 235
10.2 Windows Types 239
10.3 Stream Operators and CQs 241
10.4 Buffers and Archiving 248
10.5 Run-time Optimizer 250
10.6 QoS-Delivery Mechanisms 262
10.7 System Evaluation 267
11 INTEGRATING CEP WITH A DSMS 280
11.1 MavStream: Integrated Issues 281
11.2 Design of the Integrated System 285
11.3 Implementation Details of Integration 294
11.4 Stream Modiers 300
11.5 Additional Benets of CEP Integration 303
11.6 Summary of Chapter 11 304
12 CONCLUSIONS AND FUTURE DIRECTIONS 305
12.1 Looking Ahead 305
12.2 Stream Processing 306
12.3 Integration of Stream and Event Processing 309
12.4 Epilogue 311
References 312
Index 332

Erscheint lt. Verlag 9.4.2009
Reihe/Serie Advances in Database Systems
Advances in Database Systems
Zusatzinfo XXVI, 324 p. 50 illus.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Grafik / Design
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Algorithmen
Naturwissenschaften
Schlagworte Architecture • Chakravarthy • currentsmp • Database • Database Management • Data processing • Dom • Monitor • QoS • security • Solutions • Stream • Stream Data
ISBN-10 0-387-71003-5 / 0387710035
ISBN-13 978-0-387-71003-7 / 9780387710037
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
CHF 24,40