Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Evolutionary Genomics

Statistical and Computational Methods, Volume 1

Maria Anisimova (Herausgeber)

Buch | Hardcover
467 Seiten
2012
Humana Press Inc. (Verlag)
978-1-61779-581-7 (ISBN)

Lese- und Medienproben

Evolutionary Genomics -
CHF 249,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book examines developments in statistical methodology and the challenges that followed rapidly improving sequencing technologies. Includes articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight.
Together with early theoretical work in population genetics, the debate on sources of genetic makeup initiated by proponents of the neutral theory made a solid contribution to the spectacular growth in statistical methodologies for molecular evolution. Evolutionary Genomics: Statistical and Computational Methods is intended to bring together the more recent developments in the statistical methodology and the challenges that followed as a result of rapidly improving sequencing technologies.  Presented by top scientists from a variety of disciplines, the collection includes a wide spectrum of articles encompassing theoretical works and hands-on tutorials, as well as many reviews with key biological insight.  Volume 1 includes a helpful introductory section of bioinformatician primers followed by detailed chapters detailing genomic data assembly, alignment, and homology inference as well as insights into genome evolution from statistical analyses.  Written in the highly successful Methods in Molecular Biology™ series format, this work provides the kind of advice on methodology and implementation that is crucial for getting ahead in genomic data analyses.

 

Comprehensive and cutting-edge, Evolutionary Genomics: Statistical and Computational Methods is a treasure chest of state-of the-art methods to study genomic and omics data, certain to inspire both young and experienced readers to join the interdisciplinary field of evolutionary genomics.

Introduction to Genome Biology: Features, Processes, and Structures.- Diversity of Genome Organization.- Probability, Statistics, and Computational Science.- The Essentials of Computational Molecular Evolution.- Next-Generation Sequencing Technologies and Fragment Assembly Algorithms.- Gene Prediction.- Alignment Methods: Strategies, Challenges, Benchmarking, and Comparative Overview.- Whole-Genome Alignment.- Inferring Orthology and Paralogy.- Detecting Laterally Transferred Genes.- Genome Evolution in Outcrossing Vs. Selfing Vs. Asexual Species.- Transposable Elements And Their Identification.- Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans.- Detection and Phylogenetic Assessment of Conserved Synteny Derived from Whole Genome Duplications.- Analysis of Gene Order Evolution Beyond Single-Copy Genes.- Discovering Patterns in Gene Order.

Reihe/Serie Methods in Molecular Biology ; 855
Zusatzinfo 13 Illustrations, color; 78 Illustrations, black and white; XIV, 467 p. 91 illus., 13 illus. in color.
Verlagsort Totowa, NJ
Sprache englisch
Maße 178 x 254 mm
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete
Studium 2. Studienabschnitt (Klinik) Humangenetik
Naturwissenschaften Biologie Evolution
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Bioinformatics • Computational Techniques • Data assembly • Gen-Analyse / Genom-Analyse • Genome biology • Genomic evolution • Homology inference • sequence alignment • statistical methodology
ISBN-10 1-61779-581-X / 161779581X
ISBN-13 978-1-61779-581-7 / 9781617795817
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine sehr persönliche Geschichte | Der New York Times-Bestseller

von Siddhartha Mukherjee

Buch | Softcover (2023)
Ullstein Taschenbuch Verlag
CHF 30,75
Die revolutionäre Medizin von morgen (Lifespan)

von David A. Sinclair; Matthew D. LaPlante

Buch | Softcover (2020)
DuMont Buchverlag
CHF 22,40