Principles and Case Studies of Simultaneous Design
Wiley-AIChE (Verlag)
978-0-470-92708-3 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
WILLIAM L. LUYBEN, PhD, is a professor at Lehigh University, and the author/co-author of thirteen textbooks. He has published over 250 technical papers in the area of process control and design and has supervised thirty-five PhD dissertations He has nine years of industrial experience with Exxon and DuPont.
PREFACE xv 1 INTRODUCTION 1
1.1 Overview / 1
1.2 History / 3
1.3 Books / 4
1.4 Tools / 4
Reference Textbooks / 5
2 PRINCIPLES OF REACTOR DESIGN AND CONTROL 7
2.1 Background / 7
2.2 Principles Derived from Chemistry / 8
2.2.1 Heat of Reaction / 8
2.2.2 Reversible and Irreversible Reactions / 9
2.2.3 Multiple Reactions / 10
2.3 Principles Derived from Phase of Reaction / 11
2.4 Determining Kinetic Parameters / 12
2.4.1 Thermodynamic Constraints / 12
2.4.2 Kinetic Parameters from Plant Data / 13
2.5 Principles of Reactor Heat Exchange / 13
2.5.1 Continuous Stirred-Tank Reactors / 13
2.5.2 Tubular Reactors / 14
2.5.3 Feed-Effluent Heat Exchangers / 16
2.6 Heuristic Design of Reactor/Separation Processes / 17
2.6.1 Introduction / 17
2.6.2 Process Studied / 18
2.6.3 Economic Optimization / 21
2.6.4 Other Cases / 22
2.6.5 Real Example / 27
2.7 Conclusion / 28
References / 29
3 PRINCIPLES OF DISTILLATION DESIGN AND CONTROL 31
3.1 Principles of Economic Distillation Design / 32
3.1.1 Operating Pressure / 32
3.1.2 Heuristic Optimization / 33
3.1.3 Rigorous Optimization / 33
3.1.4 Feed Preheating and Intermediate Reboilers and Condensers / 34
3.1.5 Heat Integration / 34
3.2 Principles of Distillation Control / 35
3.2.1 Single-End Control / 36
3.2.2 Dual-End Control / 38
3.2.3 Alternative Control Structures / 38
3.3 Conclusion / 39
References / 39
4 PRINCIPLES OF PLANTWIDE CONTROL 41
4.1 History / 42
4.2 Effects of Recycle / 42
4.2.1 Time Constants of Integrated Plant with Recycle / 42
4.2.2 Recycle Snowball Effect / 43
4.3 Management of Fresh Feed Streams / 45
4.3.1 Fundamentals / 45
4.3.2 Process with Two Recycles and Two Fresh Feeds / 46
4.4 Conclusion / 52
5 ECONOMIC BASIS 53
5.1 Level of Accuracy / 53
5.2 Sizing Equipment / 54
5.2.1 Vessels / 54
5.2.2 Heat Exchangers / 55
5.2.3 Compressors / 56
5.2.4 Pumps, Valves, and Piping / 56
5.3 Equipment Capital Cost / 56
5.3.1 Vessels / 56
5.3.2 Heat Exchangers / 56
5.3.3 Compressors / 57
5.4 Energy Costs / 57
5.5 Chemical Costs / 57
References / 57
6 DESIGN AND CONTROL OF THE ACETONE PROCESS VIA DEHYDROGENATION OF ISOPROPANOL 59
6.1 Process Description / 60
6.1.1 Reaction Kinetics / 61
6.1.2 Phase Equilibrium / 62
6.2 Turton Flowsheet / 62
6.2.1 Vaporizer / 63
6.2.2 Reactor / 64
6.2.3 Heat Exchangers, Flash Tank, and Absorber / 64
6.2.4 Acetone Column C1 / 66
6.2.5 Water Column C2 / 66
6.3 Revised Flowsheet / 66
6.3.1 Effect of Absorber Pressure / 66
6.3.2 Effect of Water Solvent and Absorber Stages / 68
6.3.3 Effect of Reactor Size / 68
6.3.4 Optimum Distillation Design / 69
6.4 Economic Comparison / 69
6.5 Plantwide Control / 71
6.5.1 Control Structure / 71
6.5.2 Column Control Structure Selection / 75
6.5.3 Dynamic Performance Results / 76
6.6 Conclusion / 81
References / 81
7 DESIGN AND CONTROL OF AN AUTO-REFRIGERATED ALKYLATION PROCESS 83
7.1 Introduction / 84
7.2 Process Description / 84
7.2.1 Reaction Kinetics / 85
7.2.2 Phase Equilibrium / 85
7.2.3 Flowsheet / 86
7.2.4 Design Optimization Variables / 88
7.3 Design of Distillation Columns / 89
7.3.1 Depropanizer / 89
7.3.2 Deisobutanizer / 89
7.4 Economic Optimization of Entire Process / 91
7.4.1 Flowsheet Convergence / 91
7.4.2 Yield / 91
7.4.3 Effect of Reactor Size / 91
7.4.4 Optimum Economic Design / 93
7.5 Alternative Flowsheet / 94
7.6 Plantwide Control / 96
7.6.1 Control Structure / 96
7.6.2 Controller Tuning / 100
7.6.3 Dynamic Performance / 101
7.7 Conclusion / 103
References / 105
8 DESIGN AND CONTROL OF THE BUTYL ACETATE PROCESS 107
8.1 Introduction / 108
8.2 Chemical Kinetics and Phase Equilibrium / 108
8.2.1 Chemical Kinetics and
Chemical Equilibrium / 108
8.2.2 Vapor-Liquid Equilibrium / 110
8.3 Process Flowsheet / 112
8.3.1 Reactor / 112
8.3.2 Column C1 / 113
8.3.3 Column C2 / 113
8.3.4 Column C3 / 113
8.3.5 Flowsheet Convergence / 115
8.4 Economic Optimum Design / 117
8.4.1 Reactor Size and Temperature / 117
8.4.2 Butanol Recycle and Composition / 118
8.4.3 Distillation Column Design / 119
8.4.4 System Economics / 120
8.5 Plantwide Control / 121
8.5.1 Column C1 / 121
8.5.2 Column C2 / 122
8.5.3 Column C3 / 122
8.5.4 Plantwide Control Structure / 123
8.5.5 Dynamic Performance / 124
8.6 Conclusion / 133
References / 133
9 DESIGN AND CONTROL OF THE CUMENE PROCESS 135
9.1 Introduction / 136
9.2 Process Studied / 136
9.2.1 Reaction Kinetics / 136
9.2.2 Phase Equilibrium / 137
9.2.3 Flowsheet / 137
9.3 Economic Optimization / 140
9.3.1 Increasing Propylene Conversion / 140
9.3.2 Effects of Design Optimization Variables / 141
9.3.3 Economic Basis / 142
9.3.4 Economic Optimization Results / 143
9.4 Plantwide Control / 147
9.5 Conclusion / 158
References / 158
10 DESIGN AND CONTROL OF THE ETHYL BENZENE PROCESS 159
10.1 Introduction / 159
10.2 Process Studied / 160
10.2.1 Reaction Kinetics / 161
10.2.2 Phase Equilibrium / 162
10.2.3 Flowsheet / 163
10.3 Design of Distillation Columns / 164
10.3.1 Column Pressure Selection / 166
10.3.2 Number of Column Trays / 169
10.4 Economic Optimization of Entire Process / 169
10.5 Plantwide Control / 172
10.5.1 Distillation Column Control Structure / 172
10.5.2 Plantwide Control Structure / 173
10.5.3 Controller Tuning / 174
10.5.4 Dynamic Performance / 174
10.5.5 Modified Control Structure / 176
10.6 Conclusion / 183
References / 183
11 DESIGN AND CONTROL OF A METHANOL REACTOR/COLUMN PROCESS 185
11.1 Introduction / 185
11.2 Process Studied / 186
11.2.1 Compression and Reactor Preheating / 186
11.2.2 Reactor / 187
11.2.3 Separator, Recycle, and Vent / 187
11.2.4 Flash and Distillation / 188
11.3 Reaction Kinetics / 188
11.4 Overall and Per-Pass Conversion / 189
11.5 Phase Equilibrium / 191
11.6 Effects of Design Optimization Variables / 192
11.6.1 Economic Basis / 192
11.6.2 Effect of Pressure / 193
11.6.3 Effect of Reactor Size / 195
11.6.4 Effect of Vent/Recycle Split / 196
11.6.5 Effect of Flash-Tank Pressure / 197
11.6.6 Optimum Distillation Column Design / 198
11.7 Plantwide Control / 201
11.7.1 Control Structure / 201
11.7.2 Column Control Structure Selection / 203
11.7.3 High-Pressure Override Controller / 203
11.7.4 Dynamic Performance Results / 204
11.8 Conclusion / 209
References / 210
12 DESIGN AND CONTROL OF THE METHOXY-METHYL-HEPTANE PROCESS 211
12.1 Introduction / 211
12.2 Process Studied / 212
12.2.1 Reactor / 212
12.2.2 Column C1 / 213
12.2.3 Column C2 / 213
12.2.4 Column C3 / 213
12.3 Reaction Kinetics / 213
12.4 Phase Equilibrium / 215
12.5 Design Optimization / 215
12.5.1 Economic Basis / 216
12.5.2 Reactor Size versus Recycle Trade-Off / 216
12.6 Optimum Distillation Column Design / 220
12.6.1 Column Pressures / 220
12.6.2 Number of Stages / 220
12.6.3 Column Profiles / 222
12.7 Plantwide Control / 223
12.7.1 Control Structure / 225
12.7.2 Dynamic Performance Results / 227
12.8 Conclusion / 230
References / 231
13 DESIGN AND CONTROL OF A METHYL ACETATE PROCESS USING CARBONYLATION OF DIMETHYL ETHER 233
13.1 Introduction / 233
13.2 Dehydration Section / 234
13.2.1 Process Description of Dehydration Section / 234
13.2.2 Dehydration Kinetics / 235
13.2.3 Alternative Flowsheets / 236
13.2.4 Optimization of Three Flowsheets / 240
13.3 Carbonylation Section / 245
13.3.1 Process Description / 246
13.3.2 Carbonylation Kinetics / 247
13.3.3 Effect of Parameters / 248
13.3.4 Flowsheet Convergence / 250
13.3.5 Optimization / 251
13.4 Plantwide Control / 255
13.4.1 Control Structure / 255
13.4.2 Dynamic Performance / 261
13.5 Conclusion / 262
References / 262
14 DESIGN AND CONTROL OF THE MONO-ISOPROPYL AMINE PROCESS 263
14.1 Introduction / 263
14.2 Process Studied / 264
14.2.1 Reaction Kinetics / 264
14.2.2 Phase Equilibrium / 265
14.2.3 Flowsheet / 266
14.3 Economic Optimization / 268
14.3.1 Design Optimization Variables / 268
14.3.2 Optimization Results / 269
14.4 Plantwide Control / 270
14.4.1 Dynamic Model Sizing / 271
14.4.2 Distillation Column Control Structures / 272
14.4.3 Plantwide Control Structure / 276
14.5 Conclusion / 289
References / 290
15 DESIGN AND CONTROL OF THE STYRENE PROCESS 291
15.1 Introduction / 292
15.2 Kinetics and Phase Equilibrium / 293
15.2.1 Reaction Kinetics / 293
15.2.2 Phase Equilibrium / 294
15.3 Vasudevan et al. Flowsheet / 295
15.3.1 Reactors / 295
15.3.2 Condenser and Decanter / 295
15.3.3 Product Column C1 / 296
15.3.4 Recycle Column C2 / 298
15.4 Effects of Design Optimization Variables / 298
15.4.1 Effect of Process Steam / 298
15.4.2 Effect of Reactor Inlet Temperature / 301
15.4.3 Effect of Reactor Size / 302
15.4.4 Optimum Distillation Column Design / 303
15.4.5 Number of Reactors / 304
15.4.6 Reoptimization / 304
15.4.7 Other Improvements / 305
15.5 Proposed Design / 305
15.6 Plantwide Control / 306
15.6.1 Control Structure / 306
15.6.2 Column Control Structure Selection / 310
15.6.3 Dynamic Performance Results / 312
15.7 Conclusion / 317
References / 317
NOMENCLATURE 319
INDEX 321
Erscheint lt. Verlag | 10.11.2011 |
---|---|
Sprache | englisch |
Maße | 183 x 262 mm |
Gewicht | 730 g |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Technik ► Maschinenbau | |
ISBN-10 | 0-470-92708-9 / 0470927089 |
ISBN-13 | 978-0-470-92708-3 / 9780470927083 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich