Nicht aus der Schweiz? Besuchen Sie lehmanns.de
College Physics Plus Mastering Physics with eText -- Access Card Package - Hugh D. Young

College Physics Plus Mastering Physics with eText -- Access Card Package

International Edition

Hugh D. Young (Autor)

Media-Kombination
1180 Seiten
2011 | 9th edition
Pearson
978-0-321-75349-6 (ISBN)
CHF 287,35 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.

 

Packages

Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase.

 

Used or rental books

If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code.

 

Access codes

Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.

 

--For more than five decades, Sears and Zemansky's College Physics has provided the most reliable foundation of physics education for students around the world. The Ninth Edition continues that tradition with new features that directly address the demands on today’s student and today’s classroom.

 

A broad and thorough introduction to physics, this new edition maintains its highly respected, traditional approach while implementing some new solutions to student difficulties. Many ideas stemming from educational research help students develop greater confidence in solving problems, deepen conceptual understanding, and strengthen quantitative-reasoning skills, while helping them connect what they learn with their other courses and the changing world around them. Math review has been expanded to encompass a full chapter, complete with end-of-chapter questions, and in each chapter biomedical applications and problems have been added along with a set of MCAT-style passage problems. Media resources have been strengthened and linked to the Pearson eText, MasteringPhysics®, and much more.

 



This packge contains:



College Physics, Ninth Edition
MasteringPhysics with Pearson eText Student Access Code Card

Hugh D. Young is Emeritus Professor of Physics at Carnegie Mellon University. He earned both his undergraduate and graduate degrees from that university. He earned his Ph.D. in fundamental particle theory under the direction of the late Richard Cutkosky. He also had two visiting professorships at the University of California, Berkeley.   Dr. Young’s career has centered entirely on undergraduate education. He has written several undergraduate-level textbooks, and became a coauthor with Francis Sears and Mark Zemansky for their well-known introductory texts. In addition to his role on Sears and Zemansky’sCollege Physics, he is also author of Sears and Zemansky’sUniversity Physics.

Chapter 0  Mathematics Review

0.1   Exponents

0.2   Scientific Notation and Powers of 10

0.3   Algebra

0.4   Direct, Inverse, and Inverse-Square Relationships

0.5   Logarithmic and Exponential Functions

0.6   Areas and Volumes

0.7   Plane Geometry and Trigonometry

 

Chapter 1  Models, Measurements, and Vectors

1.1       Introduction

1.2       Idealized Models

1.3       Standards and Units

1.4       Unit Consistency and Conversions

1.5       Precision and Significant Figures

1.6       Estimates and Orders of Magnitude

1.7       Vectors and Vector Addition

1.8       Components of Vectors

 

Chapter 2  Motion along a Straight Line

2.1       Displacement and Average Velocity

2.2       Instantaneous Velocity

2.3       Average and Instantaneous Acceleration

2.4       Motion with Constant Acceleration

2.5       Proportional Reasoning

2.6       Freely Falling Objects

2.7       Relative Velocity along a Straight Line

 

Chapter 3  Motion in a Plane

3.1       Velocity in a Plane

3.2       Acceleration in a Plane

3.3       Projectile Motion

3.4       Uniform Circular Motion

3.5       Relative Velocity in a Plane

 

Chapter 4  Newton’s Laws of Motion

4.1       Force

4.2       Newton’s First Law

4.3       Mass and Newton’s Second Law

4.4       Mass and Weight

4.5       Newton’s Third Law

4.6       Free-Body Diagrams

 

Chapter 5  Applications of Newton’s Laws

5.1       Equilibrium of a Particle

5.2       Applications of Newton’s Second Law

5.3       Contact Forces and Friction

5.4       Elastic Forces

5.5       Forces in Nature

 

Chapter 6  Circular Motion and Gravitation

6.1       Force in Circular Motion

6.2       Motion in a Vertical Circle

6.3       Newton’s Law of Gravitation

6.4       Weight

6.5       Satellite Motion

 

Chapter 7 Work and Energy

7.1       An Overview of Energy

7.2       Work

7.3       Work and Kinetic Energy

7.4       Work Done by a Varying Force

7.5       Potential Energy

7.6       Conservation of Energy

7.7       Conservative and Nonconservative Forces

7.8       Power

 

Chapter 8  Momentum

8.1       Momentum

8.2       Conservation of Momentum

8.3       Inelastic Collisions

8.4       Elastic Collisions

8.5       Impulse

8.6       Center of Mass

8.7       Motion of the Center of Mass

8.8       Rocket Propulsion

 

Chapter 9  Rotational Motion

9.1       Angular Velocity and Angular Acceleration

9.2       Rotation with Constant Angular Acceleration

9.3       Relationship between Linear and Angular Quantities

9.4       Kinetic Energy of Rotation and Moment of Inertia

9.5       Rotation about a Moving Axis

 

Chapter 10  Dynamics of Rotational Motion

10.1     Torque

10.2     Torque and Angular Acceleration

10.3     Work and Power in Rotational Motion

10.4     Angular Momentum

10.5     Conservation of Angular Momentum

10.6     Equilibrium of a Rigid Body

10.7     Vector Nature of Angular Quantities

 

Chapter 11  Elasticity and Periodic Motion

11.1     Stress, Strain, and Elastic Deformations

11.2     Periodic Motion  

11.3     Energy in Simple Harmonic Motion  

11.4     Equations of Simple Harmonic Motion  

11.5     The Simple Pendulum  

11.6     Damped and Forced Oscillations  

 

Chapter 12  Mechanical Waves and Sound 

12.1    Mechanical Waves  

12.2    Periodic Mechanical Waves  

12.3    Wave Speeds  

12.4    Mathematical Description of a Wave  

12.5    Reflections and Superposition  

12.6    Standing Waves and Normal Modes  

12.7    Longitudinal Standing Waves  

12.8    Interference  

12.9    Sound and Hearing  

12.10  Sound Intensity

12.11  Beats                                                                                                                                                    

12.12  The Doppler Effect 

12.13  Applications of Acoustics  

12.14  Musical Tones  

 

Chapter 13  Fluid Mechanics

13.1     Density

13.2     Pressure in a Fluid

13.3     Archimedes’s Principle: Buoyancy

13.4     Surface Tension and Capillarity  

13.5     Fluid Flow

13.6     Bernoulli’s Equation

13.7     Applications of Bernoulli’s equation

13.8     Real Fluids: Viscosity and Turbulence

 

Chapter 14  Temperature and Heat

14.1     Temperature and Thermal Equilibrium

14.2     Temperature Scales

14.3     Thermal Expansion

14.4     Quantity of Heat

14.5     Phase Changes

14.6     Calorimetry

14.7     Heat Transfer

14.8     Solar Energy and Resource Conservation

 

Chapter 15  Thermal Properties of Matter

15.1    The Mole and Avogadro’s Number

15.2    Equations of State  

15.3    Kinetic Theory of an Ideal Gas   

15.4    Heat Capacities

15.5    The First Law of Thermodynamics

15.6    Thermodynamic Processes

15.7    Properties of an Ideal Gas  

 

Chapter 16  The Second Law of Thermodynamics

16.1       Directions of Thermodynamic Processes  

16.2       Heat Engines  

16.3       Internal Combustion Engines  

16.4       Refrigerators  

16.5       The Second Law of Thermodynamics  

16.6       The Carnot Engine: The Most Efficient Heat Engine  

16.7       Entropy  

16.8       The Kelvin Temperature Scale  

16.9       Energy Resources: A Case Study in Thermodynamics  

 

Chapter 17  Electric Charge and Electric Field

17.1     Electric charge

17.2     Conductors and Insulators  

17.3     Conservation and Quantization of Charge 

17.4     Coulomb’s Law

17.5     Electric Field and Electric Forces

17.6     Calculating Electric Fields

17.7     Electric Field Lines 

17.8     Gauss’s Law and Field Calculations  

17.9     Charges on Conductors  

 

Chapter 18  Electric Potential and Capacitance

18.1     Electric Potential Energy

18.2     Potential  

18.3     Equipotential Surfaces

18.4     The Millikan Oil-Drop Experiment

18.5     Capacitors

18.6     Capacitors in Series and in Parallel 

18.7     Electric Field Energy 

18.8     Dielectrics  

18.9     Molecular Model of Induced Charge  

 

Chapter 19  Current, Resistance, and Direct-Current Circuits

19.1     Current

19.2     Resistance and Ohm's Law

19.3     Electromotive Force and Circuits

19.4     Energy and Power in Electric Circuits

19.5     Resistors in Series and Parallel

19.6     Kirchhoff's Rules

19.7     Electrical Measuring Instruments

19.8     Resistance-Capacitance Circuits

19.9     Physiological Effects of Currents 

19.10   Power Distribution Systems 

 

Chapter 20  Magnetic Field and Magnetic Forces  

20.1     Magnetism  

20.2     Magnetic Field and Magnetic Force  

20.3     Motion of Charged Particles in a Magnetic Field  

20.4     Mass Spectrometers  

20.5     Magnetic Force on a Current-Carrying Conductor  

20.6     Force and Torque on a Current Loop  

20.7     Magnetic Field of a Long, Straight Conductor  

20.8     Force between Parallel Conductors  

20.9     Current Loops and Solenoids 

20.10   Magnetic Field Calculations 

20.11   Magnetic Materials 

 

Chapter 21 Electromagnetic Induction  

21.1     Induction Experiments  

21.2     Magnetic Flux  

21.3     Faraday’s Law  

21.4     Lenz’s Law  

21.5     Motional Electromotive Force  

21.6     Eddy Currents  

21.7     Mutual Inductance  

21.8     Self-Inductance  

21.9     Transformers  

21.10   Magnetic Field Energy  

21.11   The R—L Circuit  

21.12   The L—C Circuit  

 

Chapter 22 Alternating Current  

22.1     Phasors and Alternating Currents  

22.2     Resistance and Reactance  

22.3     The Series R—L—C Circuit  

22.4     Power in Alternating-Current Circuits  

22.5     Series Resonance  

22.6     Parallel Resonance  

 

Chapter 23 Electromagnetic Waves  

23.1     Introduction to Electromagnetic Waves  

23.2     Speed of an Electromagnetic Wave  

23.3     The Electromagnetic Spectrum  

23.4     Sinusoidal Waves  

23.5     Energy in Electromagnetic Waves  

23.6     Nature of Light  

23.7     Reflection and Refraction  

23.8     Total Internal Reflection  

23.9     Dispersion  

23.10   Polarization  

23.11   Huygens’s Principle  

23.12   Scattering of Light  

 

Chapter 24  Geometric Optics  

24.1     Reflection at a Plane Surface  

24.2     Reflection at a Spherical Surface  

24.3     Graphical Methods for Mirrors  

24.4     Refraction at a Spherical Surface  

24.5     Thin Lenses  

24.6     Graphical Methods for Lenses  

 

Chapter 25 Optical Instruments  

25.1     The Camera  

25.2     The Projector  

25.3     The Eye  

25.4     The Magnifier  

25.5     The Microscope  

25.6     Telescopes  

25.7     Lens Aberrations  

 

Chapter 26 Interference and Diffraction  

26.1     Interference and Coherent Sources  

26.2     Two-Source Interference of Light  

26.3     Interference in Thin Films  

26.4     Diffraction  

26.5     Diffraction from a Single Slit  

26.6     Multiple Slits and Diffraction Gratings  

26.7     X-Ray Diffraction  

26.8     Circular Apertures and Resolving Power  

26.9     Holography  

 

Chapter 27 Relativity  

27.1     Invariance of Physical Laws  

27.2     Relative Nature of Simultaneity  

27.3     Relativity of Time  

27.4     Relativity of Length  

27.5     The Lorentz Transformation  

27.6     Relativistic Momentum  

27.7     Relativistic Work and Energy  

27.8     Relativity and Newtonian Mechanics  

 

Chapter 28 Photons, Electrons, and Atoms  

28.1     The Photoelectric Effect  

28.2     Line Spectra and Energy Levels  

28.3     The Nuclear Atom and the Bohr Model  

28.4     The Laser  

28.5     X-Ray Production and Scattering  

28.6     The Wave Nature of Particles  

28.7     Wave—Particle Duality  

28.8     The Electron Microscope  

 

Chapter 29 Atoms, Molecules, and Solids  

29.1     Electrons in Atoms  

29.2     Atomic Structure  

29.3     Diatomic Molecules  

29.4     Structure and Properties of Solids  

29.5     Energy Bands  

29.6     Semiconductors  

29.7     Semiconductor Devices  

29.8     Superconductivity  

 

Chapter 30 Nuclear and High-Energy Physics  

30.1     Properties of Nuclei  

30.2     Nuclear Stability  

30.3     Radioactivity  

30.4     Radiation and the Life Sciences  

30.5     Nuclear Reactions  

30.6     Nuclear Fission  

30.7     Nuclear Fusion  

30.8     Fundamental Particles  

30.9     High-Energy Physics  

30.10   Cosmology  

Erscheint lt. Verlag 22.2.2011
Sprache englisch
Maße 215 x 279 mm
Gewicht 2094 g
Themenwelt Naturwissenschaften Physik / Astronomie
ISBN-10 0-321-75349-6 / 0321753496
ISBN-13 978-0-321-75349-6 / 9780321753496
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich