Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Photonic Crystals – Advances in Design, Fabrication and Characterization

K Busch (Autor)

Software / Digital Media
380 Seiten
2006
Wiley-VCH Verlag GmbH (Hersteller)
978-3-527-60259-9 (ISBN)
CHF 238,90 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Describes methods for the theoretical analysis of the optical properties of photonic crystals. This book is talks about the fabrication, characterization, and modeling of two - and three - dimensional photonic crystals. It also presents a spectrum of applications: gas sensors, micro-lasers, and photonic crystal fibers.
The majority of the contributions in this topically edited book stems from the priority program SPP 1113 "Photonische Kristalle" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization, and modeling of two - and three - dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micro-lasers, and photonic crystal fibers. Illustrated in full color, this book is not only of interest to advanced students and researchers in physics, electrical engineering, and material science, but also to company R&D departments involved in photonic crystal-related technological developments.

Kurt Busch has been an Associate Professor at the Department of Physics and the School of Optics: CREOL & FPCE at the University of Central Florida (Orlando, USA) since January 2004. He received his undergraduate (Dipl. Phys.; 1993) and postgraduate training (Dr. rer. nat.; 1996) at the University of Karlsruhe (Germany) and partly at the Iowa State University (Ames, USA). His professional experience included working at Iowa State University (Ames, USA), the University of Toronto (Canada; 1997 1999) and leading a junior research group within the Emmy Noether program of the Deutsche Forschungsgemeinschaft at the University of Karlsruhe (Germany; 2000 2003). His research interests lie in light matter interactions and wave propagation in strongly scattering materials and Photonic Crystals. Stefan Lolkes graduated in semiconductor physics at the Technical University of Munich, Germany, in 2000. In 2001, he started his Ph.D. thesis on Electrochemical etching of Photonic Crystals at the Chair for General Materials Science at the Chr istian Alb rechts University of Kiel, Germany. In parallel, he co organized already several national symposia on Photonic Crystals in the framework of the DFG priority program 1113 Photonic Crystals . Ralf B. Wehrspohn received his diploma degree in physics at the University of Oldenburg in 1995. He then carried out a Ph.D. at the Ecole Polytechnique in France about thin film technology and electrochemistry. In 1998 he joined the Philips Research Laboratories in Redhill, U.K., to work on thin film transistors for AMLCD. From end of 1999 to March 2003 he has been responsible for the activities on photonic crystals and self ordered porous materials at the Max Planck Institute of Microstructure Physics in Halle. Since April 2003 he is full professor in experimental physics at the University of Paderborn where he leads the activities on nanophotonic materials. R. B. Wehrspohn has been awarded with the Heinz Maier Leipnitz award of the DFG and the TR100 innovation price of the MIT in 2003. Helmut Foll received his Ph.D. degree in Physics in 1976 from the University of Stuttgart in conjunction with the Max Planck Institute for Metal Research in Stuttgart. After postdoctorial work at the Department of Materials Science and Engineering at Cornell University and a position as guest scientist at the T.J. Watson Res. Center of IBM in Yorktown Heights, he joined Siemens in 1980, working in the newly founded Solar Energy Department of Central Research in Munich. After various senior positions in microelectronics development, in 1991 he accepted an offer of the Christian Albrechts University of Kiel to become the founding dean of the newly established Faculty of Engineering, where he also holds the Chair for General Materials Science. Since 1998 he is back to research, with particular interest in solar cell technology and the electrochemistry of semiconductors. He is one of the pioneers in the field of porous semiconductors and has coauthored more than 150 papers and 20 patents.

Preface. About the editors. List of contributors. 1 On the solid state theoretical description of photonic crystals (K. Busch, M. Diem, M. Frank, A. Garcia Martin, F. Hagmann, D. Hermann, S. Mingaleev, S. Pereira, M. Schillinger, and L. Tkeshelashvili). 1.1 Introduction. 1.2 Photonic band structure computation. 1.2.1 Density of states. 1.2.2 Group velocity and group velocity dispersion. 1.3 Nonlinear photonic crystals. 1.4 Finite structures. 1.5 Defect structures in photonic crystals. 1.5.1 Maximally localized photonic Wannier functions. 1.5.2 Wannier description of defect structures. 1.5.3 Localized cavity modes. 1.5.4 Dispersion relations of waveguides. 1.5.5 Light propagation through photonic crystal circuits. 1.6 Conclusions. References. 2 Spontaneous emission in photonic structures: Theory and simulation (G. Boedecker, C. Henkel, Ch. Hermann, and O. Hess). 2.1 Introduction. 2.2 Basic con cepts. 2.2.1 Fermi's Golden Rule. 2.2.2 Beyond the simple picture. 2.2.3 Coherent tuning of spontaneous decay. 2.2.4 QED in a structured continuum. 2.3 Simulations. 2.3.1 Frequency domain. 2.3.2 Time domain. 2.4 Concluding remarks. References. 3 Semiconductor optics in photonic crystal structures (T. Meier and S. W. Koch). 3.1 Introduction. 3.2 Semiclassical theory. 3.2.1 Light matter coupling. 3.2.2 Generalized Coulomb potential. 3.2.3 Hamilton operator. 3.2.4 Equations of motion. 3.3 Numerical results. 3.3.1 Linear exciton absorption. 3.3.2 Coherently excited inhomogeneous populations. 3.3.3 Quasi equilibrium inhomogeneous populations and nonlinear absorption. 3.3.4 Coherent wave packet dynamics versus dephasing and thermalization. 3.4 Summary and outlook. References. 4 Electrochemically prepared 2D and 3D photonic crystals (R.B. Wehrspohn, J. Schilling, J. Choi, Y. Luo, S. Matthias, S. L. Schweizer, F. Muller, U. Gosele, S. Lolkes, S. Langa, J. Carstensen, and H. Foll). 4.1 Introduction. 4.2 Materials. 4.2.1 Porous silicon. 4.2.2 Porous alumina. 4.2.3 Porous III V semiconductors. 4.3 Application to photonic crystals. 4.3.1 Introduction. 4.3.2 2D photonic crystals made of macroporous silicon. 4.3.3 Photonic defects in electrochemically prepared 2D photonic crystals. 4.3.4 3D photonic crystals made of macroporous silicon. 4.3.5 2D photonic crystals made of porous alumina. 4.3.6 1D photonic crystals made of InP. 4.3.7 2D photonic crystals made of InP. 4.3.8 3D photonic crystals made of InP and GaAs. 4.4 Summary. References. 5 Optical properties of planar metallo dielectric photonic crystals (A. Christ, S. Linden, T. Zentgraf, K. Schubert, D. Nau, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, F. Schindler, A.W. Holleitner, J. Stehr, J. Crewett, J. Lupton, T. Klar, U. Scherf, J. Feldmann, C. Dahmen, G. von Plessen, and H. Giessen). 5.1 Introduction. 5.2 Optical characterization of individual gold nanodisks. 5.3 Observation of Rayleigh anomalies in metallo dielectric nanostructures. 5.3.1 Metallic nanoparticle arrays. 5.3.2 Metallic nanowire arrays. 5.4 Waveguide plasmon polaritons: Strong coupling in a metallic photonic crystal. 5.4.1 Metallic nanoparticle arrays on dielectric waveguide substrates. 5.4.2 Metallic nanowire arrays on dielectric waveguide substrates. 5.4.3 Ultrafast dynamics of waveguide plasmon polaritons. 5.5 A polymer DFB laser based on a metal nanoparticle array. 5.6 Summary. References. 6 Preparation of 3D photonic crystals from opals (M. Egen, R. Zentel, P. Ferrand, S. Eiden, G. Maret, and F. Caruso). 6.1 Introduction. 6.2 Preparation of monodisperse colloids. 6.2.1 General methods. 6.2.2 Preparation of functional core shell structures. 6.3 Crystallization into opaline structures. 6.3.1 Sedimentation. 6.3.2 Crystallization mediated by the magnetic field. 6.3.3 Two dimensional crystallization to photonic crystal films. 6.4 Structured photonic crystals. 6.4.1 Lateral patterning. 6.4.2 Preparation of hetero structures from different colloids. 6.5 Replica from opaline structure. References. 7 Light emitting opal based photonic crystal heterojunctions (S. G. Romanov, N. Gaponik, A. Eychmuller, A. L. Rogach, V. G. Solovyev, D. N. Chigrin, and C. M. Sotomayor Torres). 7.1 Introduction. 7.2 Experimental techniques and material preparation. 7.2.1 Measurement techniques. 7.2.2 Preparation of hetero opals. 7.2.3 Selective impregnation of hetero opals with luminescent nanocrystals. 7.3 Reflectance and transmission spectra of hetero opals. 7.3.1 Observation of two Bragg band gaps. 7.3.2 The interface gap. 7.4 Light emission in hetero opals. 7.4.1 Anisotropy of photoluminescence in hetero opals. 7.4.2 Emission modification at the interface. References. 8 Three dimensional lithography of Photonic Crystals (A. Blanco, K. Busch, M. Deubel, C. Enkrich, G. von Freymann, M. Hermatschweiler, W. Koch, S. Linden, D.C. Meisel, and M. Wegener). 8.1 Introduction. 8.2 Holographic lithography. 8.2.1 The photoresist. 8.2.2 The crystallography of multiple beam interference patterns. 8.2.3 Experimental realization. 8.2.4 Optical properties of the photoresist structures. 8.3 Direct laser writing. 8.3.1 Multi photon polymerization. 8.3.2 Experimental realization. 8.3.3 Direct laser writing of three dimensional photonic crystals. 8.3.4 Optical characterization. 8.4 Templates infiltration. 8.4.1 Silicon CVD. 8.4.2 Electrochemical deposition. 8.5 Conclusions. References. 9 Tunable photonic crystals using liquid crystals (H. S. Kitzerow and J.P. Reithmaier). 9.1 Introduction: Concepts of tunable photonic crystals. 9.2 Properties of liquid crystals. 9.3 Spatially periodic LCs and colloidal crystals. 9.3.1 Periodic liquid crystals. 9.3.2 Colloidal crystals containing LCs. 9.3.3 Polymer dispersed liquid crystals. 9.4 Microstructured semiconductors. 9.4.1 Macroporous silicon. 9.4.2 Group III V semiconductors. 9.5 Summary and perspectives. 9.5.1 Possible applications of macroporous silicon. 9.5.2 Possible applications for tunable planar III/V semiconductor photonic crystals. References. 10 Microwave modelling of photonic crystals (W. Freude, G. A. Chakam, J. M. Brosi, and Ch. Koos). 10.1 Fundamentals. 10.1.1 Maxwell's equations and scaling laws. 10.1.2 Numerical tools. 10.2 Microwave measurements. 10.2.1 Scattering matrix. 10.2.2 Microwave equipment. 10.2.3 Coupling of coaxial metallic to dielectric strip waveguide. 10.3 Loss measurement of waveguide resonator. 10.4 Experimental results. 10.4.1 2Dinfinite height PhC. 10.4.2 2D finite height PhC with line defect waveguide. References. 11 Scanning near field optical studies of photonic devices (V. Sandoghdar, B. Buchler, P. Kramper, S. Gotzinger, O. Benson, and M. Kafesaki). 11.1 Introduction. 11.2 Scanning near field optical microscopy (SNOM). 11.2.1 Brief historical background. 11.2.2 The operation principle of SNOM. 11.2.3 Instrumentation. 11.2.4 Various modes of SNOM operation. 11.3 Imaging photonic devices with SNOM. 11.3.1 The evanescent field on a prism. 11.3.2 SNOM on whispering gallery resonators. 11.3.3 Interferometric SNOM measurements. 11.3.4 Photonic crystals. 11.4 Manipulating photonic devices with SNOM. 11.5 Conclusion. References. 12 Application of photonic crystals for gas detection and sensing (R.B. Wehrspohn, S. L. Schweizer, J. Schilling, T. Geppert, C. Jamois, R. Glatthaar, P. Hahn, A. Feisst, and A. Lambrecht). 12.1 Principle. 12.2 Realizations with 3D photonic crystals. 12.3 Conclusion. References. 13 Polymeric photonic crystal lasers (K. Forberich, S. Riechel, S. Pereira, A. Gombert, K. Busch, J. Feldmann, and U. Lemmer). 13.1 Introduction. 13.2 Fabrication of microstructured surfaces by interference lithography. 13.2.1 Interference lithography. 13.2.2 Replication and subsequent substrate processing. 13.3 Active materials for organic photonic crystal lasers. 13.4 Lasing in two dimensional polymeric photonic crystals. 13.5 Semiclassical theory of lasing in surface relief structures. 13.5.1 Semiclassical laser theory in structured media. 13.5.2 Effective 2D model for surface relief structures. 13.5.3 Discussion of lasing behavior in surface relief structures. 13.6 Conclusions. References. 14 Photonic crystal fibers (J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt, R. Iliew, C. Etrich, and F. Lederer). 14.1 Introduction. 14.2 Modeling of photonic crystal fibers. 14.2.1 Plane wave expansion methods. 14.2.2 The localized functions method. 14.2.3 The finite element method (FEM). 14.2.4 The multipole method. 14.2.5 Propagation methods. 14.3 Fiber technology. 14.3.1 Preparation of photonic crystal fibers. 14.3.2 Fluid dynamic aspects in the preparation of photonic crystal fibers. 14.4 Special properties of photonic crystal fibers. 14.4.1 Spectral transmission. 14.4.2 Variation of the numerical aperture and the mode profil. 14.4.3 Dispersion properties. 14.4.4 Mechanical properties. 14.5 Overviewof applications. 14.6 Conclusions. References. 15 Photonic crystal optical circuits in moderate index materials (M. Augustin, G. Bottger, M. Eich, C. Etrich, H. J. Fuchs, R. Iliew, U. Hubner, M. Kessler, E. B. Kley, F. Lederer, C. Liguda, S. Nolte, H.G.Meyer,W.Morgenroth, U. Peschel, A. Petrov, D. Schelle, M. Schmidt, A. Tunnermann, and W. Wischmann). 15.1 Motivation. 15.2 Design of the PhC films. 15.3 Photonic crystal waveguides in niobiumpentoxide. 15.4 Photonic crystals in polymer films. 15.5 Conclusions. References. 16 Planar high index contrast photonic crystals for telecom applications (R. Marz, S. Burger, S. Golka, A. Forchel, C. Hermann, C. Jamois, D. Michaelis, and K. Wandel). 16.1 Introduction and motivation. 16.2 Wave guide losses. 16.3 Efficient analysis of photonic crystals. 16.4 Patterning of photonic crystals. 16.5 Sources for multi channel WDM transmitters. 16.6 Photonic crystal superprisms for WDM applications. 16.7 PhC based dispersion compensator. 16.8 Fiber to chip coupling of photonic crystals. References. 17 Photonic crystal based active optoelectronic devices (M. Kamp, T. Happ, S. Mahnkopf, A. Forchel, S. Anand, and G. H. Duan). 17.1 Introduction. 17.2 Waveguide based 2D photonic crystals. 17.3 Semiconductor lasers with photonic crystal mirrors. 17.3.1 Fabrication. 17.3.2 Device performance. 17.3.3 Single mode photonic crystal based lasers. 17.4 All photonic crystal lasers. 17.5 Tunable photonic crystal lasers. 17.6 Conclusion. References. Appendix. A. List of abbreviations. B. Conventions. Index.

Erscheint lt. Verlag 26.5.2006
Verlagsort Weinheim
Sprache englisch
Gewicht 1 g
Themenwelt Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
ISBN-10 3-527-60259-3 / 3527602593
ISBN-13 978-3-527-60259-9 / 9783527602599
Zustand Neuware
Haben Sie eine Frage zum Produkt?