Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Pattern Recognition in Chemistry

(Autor)

Buch | Softcover
XII, 222 Seiten
1980 | 1. Softcover reprint of the original 1st ed. 1980
Springer Berlin (Verlag)
978-3-540-10273-1 (ISBN)

Lese- und Medienproben

Pattern Recognition in Chemistry - Kurt Varmuza
CHF 74,85 inkl. MwSt
Analytical chemistry of the recent years is strongly influenced by automation. Data acquisition from analytica~ instruments - and some times also controlling of instruments - by a computer are principally solved since many years. Availability of microcomputers made these tasks also feasible from the economic point of view. Besides these basic applications of computers in chemical measurements scientists developed computer programs for solving more sophisticated problems for which some kind of "intelligence" is usually supposed to be necessary. Harm less numerical experiments on this topic led to passionate discussions about the theme "which jobs cannot be done by a computer but only by human brain ?~. If this question is useful at all it should not be ans wered a priori. Application of computers in chemistry is a matter of utility, sometimes it is a social problem, but it is never a question of piety for the human brain. Automated instruments and the necessity to work on complex pro blems enhanced the development of automatic methods for the reduction and interpretation of large data sets. Numerous methods from mathematics, statistics, information theory, and computer science have been exten sively investigated for the elucidation of chemical information; a new discipline "chemometrics" has been established. Three different approaches have been used for computer-assisted interpretations of chemical data. 1. Heuristic methods try to formu late computer programs working in a similar way as a chemist would solve the problem. 2.

A: Introduction to Some Pattern Recognition Methods.- 1. Basic Concepts.- 2. Computation of Binary Classifiers.- 3. K - Nearest Neighbour Classification (KNN-Method).- 4. Classification by Adaptive Networks.- 5. Parametric Classification Methods.- 6. Modelling of Clusters.- 7. Clustering Methods.- 8. Display Methods.- 9. Preprocessing.- 10. Feature Selection.- 11. Evaluation of Classifiers.- B: Application of Pattern Recognition Methods in Chemistry.- 12. General Aspects of Pattern Recognition in Chemistry.- 13. Spectral Analysis.- 14. Chromatography.- 15. Electrochemistry.- 16. Classification of Materials and Chemical Compounds.- 17. Relationships between Chemical Structure and Biological Activity.- 18. Clinical Chemistry.- 19. Environmental Chemistry.- 20. Classification of Analytical Methods.- C: Append.- 21. Literature.- 21.4. List of Authors.- 22. Subject Index.

Erscheint lt. Verlag 1.11.1980
Reihe/Serie Lecture Notes in Chemistry
Zusatzinfo XII, 222 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 400 g
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Schlagworte Chemie • classification • Clustering • Mustererkennung • Pattern • pattern recognition • spectroscopy
ISBN-10 3-540-10273-6 / 3540102736
ISBN-13 978-3-540-10273-1 / 9783540102731
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

Buch | Softcover (2023)
De Gruyter (Verlag)
CHF 76,90