Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Models and Phenomena in Fracture Mechanics - Leonid I. Slepyan

Models and Phenomena in Fracture Mechanics

Buch | Softcover
XVII, 576 Seiten
2010 | 1. Softcover reprint of hardcover 1st ed. 2002
Springer Berlin (Verlag)
978-3-642-07845-3 (ISBN)
CHF 389,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Presenting the most important results, methods, and open questions, this book describes and compares advanced models in fracture mechanics. The author introduces the required mathematical technique, mainly the theory of analytical functions, from scratch.
Modern concepts of fracture mechanics are presented consecutively. Homogeneous and structured models, where microstructure plays an essential role, are considered for fracture and phase transition. Firstly, one-dimensional models are comprehensively studied allowing one to retrace the main phenomena without technical difficulties. More realistic models are then used as linear and nonlinear elastic mediums, such as elastic plates with crack closure, viscoelastic discrete lattices, chains and cohesive zone models. Also considered are, crack origination, equilibrium, slow and fast growth. Sub- and super critical crack speed regimes and transition from one regime to another are studied. Fourier transform and related topics, including a version of the Wiener-Hopf technique dealing with originals are presented, as well as required topics from wave theory. This book is targeted at researchers of materials and structures, also at lecturers and advanced students.

1 Fundamentals and Basic Relations.- 1.1 Energy Release and Energy Criterion.- 1.2 Some Methods for Determination of Energy Release.- 1.3 Other Examples of the Energy Release Phenomenon.- 1.4 Stress Intensity Criterion.- 1.5 Some Fracture-Associated Phenomena.- 2 Fourier Transform and Related Topics.- 2.1 Continuous Fourier Transform.- 2.2 Wiener-Hopf Technique.- 2.3 Laplace and Fourier Transform.- 2.4 Discrete Fourier Transform.- 3 Waves.- 3.1 Waves of Sinusoidal and Exponential Types.- 3.2 Waves in Periodic Structures.- 3.3 Forced Waves.- 3.4 Waves in Homogeneous Space and Half-Space.- 3.5 Nonlinear Waves in a String.- 4 One-dimensional Models.- 4.1 String Model.- 4.2 Bending Beam Model.- 5 Static Cracks in a Linearly Elastic Body.- 5.1 Field Representations.- 5.2 Kolosov-Muskhelishvili Representation.- 5.3 Papkovich Representation.- 5.4 Crack in an Unbounded Plane.- 5.5 Asymptotes.- 5.6 Homogeneous Solutions.- 5.7 Integral Equations for a General Crack System.- 5.8 Crack Interaction.- 5.9 Energy Release Under Crack Kink.- 5.10 Cohesive Zone Model.- 5.11 Penny-Shaped Crack.- 5.12 Betti#x2019;s Theorem and the Weight Functions.- 6 Nonlinear Elastic Body.- 6.1 Some Data from Nonlinear Elasticity.- 6.2 Lagrangian and Eulerian Interpretation of Linear Elasticity.- 6.3 Strains in the Neighborhood of a Singular Point.- 6.4 Exact Relationships for the Energy Release and Some Consequences.- 7 Viscoelastic Fracture.- 7.1 Some Data from Viscoelasticity.- 7.2 Stationary Crack and Collinear Crack System.- 7.3 Growing Crack.- 7.4 Cohesive Zone for Viscoelastic Material.- 8 Elastic-Plastic Fracture.- 8.1 Elastic-Plastic Fields.- 8.2 Fixed Cracks.- 8.3 Growing Cracks.- 8.4 Elastic-Plastic Dynamic Fracture.- 9 Dynamic Fracture in a Homogeneous Elastic Medium.- 9.1 Some BasicRelations.- 9.2 Crack Tip Asymptotes and the Energy Release.- 9.3 Factorization of the Fundamental Solutions.- 9.4 Uniform Crack Propagation.- 9.5 Nonuniform Crack Speed Problem.- 9.6 Self-Similar Dynamic Problems.- 9.7 Dynamic Crack in a Plate Under Bending.- 9.8 Principle of Maximum Energy Dissipation Rate.- 10 Cracks in a Bending Plate.- 10.1 Asymptotic Solution for a Single Crack.- 10.2 Radial Cracking with Closure.- 10.3 Self-Similar Dynamic Problem.- 11 The Square-Cell Lattice.- 11.1 Preliminaries.- 11.2 Some Introductory Remarks.- 11.3 Elastic Lattice: Formulation and the Governing Equation.- 11.4 Factorization.- 11.5 Solutions.- 11.6 Viscoelastic Lattice.- 12 Triangular-Cell Elastic Lattice.- 12.1 Introductory Remarks.- 12.2 General Properties of Fundamental Solutions.- 12.3 Equations and General Solutions.- 12.4 Macrolevel-Associated Solution.- 12.5 Microlevel Solutions.- 12.6 Concluding Remarks.- 13 Phase Transition Waves.- 13.1 Introductory Remarks.- 13.2 Macrolevel Solution.- 13.3 Discrete Chain.- 13.4 Higher-Order-Derivative Model.- 13.5 Concluding Remarks.- 14 Dynamic Amplification Factor in Fracture and Phase Transition.- 14.1 Introductory Remarks.- 14.2 Line of Viscoelastic Oscillators.- 14.3 DOR and SAR Domains for Viscoelastic Oscillator.- 14.4 Viscoelastic Square-Cell Lattice.- 14.5 Slow Phase Transition Wave in a Chain.- 14.6 Triangular-Cell Lattice Irregularities in Fracture.- References.

Erscheint lt. Verlag 8.12.2010
Reihe/Serie Foundations of Engineering Mechanics
Zusatzinfo XVII, 576 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 896 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Mechanik
Technik Maschinenbau
Schlagworte Bruchmechanik • cracks • damage • Dynamics • Fracture • fracture mechanics • Mechanics • Strength of materials • Stress
ISBN-10 3-642-07845-1 / 3642078451
ISBN-13 978-3-642-07845-3 / 9783642078453
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20