Quantum Invariants of Knots and 3-Manifolds
Seiten
1994
|
1. Reprint 2020
De Gruyter (Verlag)
978-3-11-013704-0 (ISBN)
De Gruyter (Verlag)
978-3-11-013704-0 (ISBN)
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics.While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time.
This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time.
Erscheint lt. Verlag | 1.7.1994 |
---|---|
Reihe/Serie | De Gruyter Studies in Mathematics ; 18 |
Zusatzinfo | Num. figs. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 1125 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Schlagworte | Algebra • Algebra and Number Theory • Allgemeines, Lexika • Geometry • Knotentheorie • Mannigfaltigkeit (Mathematik) • Mathematics • Physics • Quantenfeldtheorie • Quantum Theory • Science |
ISBN-10 | 3-11-013704-6 / 3110137046 |
ISBN-13 | 978-3-11-013704-0 / 9783110137040 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich