Geometric Analysis of Hyperbolic Differential Equations: An Introduction
Seiten
2010
Cambridge University Press (Verlag)
978-0-521-12822-3 (ISBN)
Cambridge University Press (Verlag)
978-0-521-12822-3 (ISBN)
Its self-contained presentation and 'do-it-yourself' approach makes this the perfect guide for graduate students wishing to access recent literature in the field of mathematical relativity. It introduces all of the key tools and concepts from Lorentzian geometry and provides complete elementary proofs. No previous knowledge of geometry is required.
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
S. Alinhac is Professor in the Department of Mathematics at the University of Paris-Sud 11, Orsay.
Preface; 1. Introduction; 2. Metrics and frames; 3. Computing with frames; 4. Energy inequalities and frames; 5. The good components; 6. Pointwise estimates and commutations; 7. Frames and curvature; 8. Nonlinear equations, a priori estimates and induction; 9. Applications to some quasilinear hyperbolic problems; References; Index.
Erscheint lt. Verlag | 20.5.2010 |
---|---|
Reihe/Serie | London Mathematical Society Lecture Note Series |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 190 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Relativitätstheorie | |
ISBN-10 | 0-521-12822-6 / 0521128226 |
ISBN-13 | 978-0-521-12822-3 / 9780521128223 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90