Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Bioelectricity - Robert Plonsey, Roger C. Barr

Bioelectricity

A Quantitative Approach
Media-Kombination
528 Seiten
2007 | 3rd ed. 2007
Springer-Verlag New York Inc.
978-0-387-48864-6 (ISBN)
CHF 179,70 inkl. MwSt
  • Versand in 10-14 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The study of electrophysiology has progressed rapidly because of the precise, delicate, and in- nious experimental studies of many investigators. The ?eld has also made great strides by uni- ingtheseexperimentalobservationsthroughmathematicaldescriptionsbasedonelectromagnetic ?eld theory, electrochemistry, etc. , which underlie these experiments. In turn, these quantitative materialsprovideanunderstandingofmanyelectrophysiologicalapplicationsthrougharelatively small number of fundamental ideas. This text is an introduction to electrophysiology, following a quantitative approach. The ?rst chapter summarizes much of the mathematics required in the following chapters. The second chapter presents a very concise overview of the principles of electrical ?elds and the concomitant current ?ow in conducting media. It utilizes basic principles from the physical sciences and engineering but takes into account the biological applications. The following six chapters are the core material of this text. Chapter 3 includes a description of how voltages/currents exist across membranes and how these are evaluated using the Nernst–Planck equation. The membrane channels, which are the basis for cell excitability, are described in Chapter 4. An examination of the time course of changes in membrane voltages that produce action potentials are considered in Chapter 5. Propagation of action potentials down ?bers is the subject of Chapter 6, and the response of ?bers to arti?cial stimuli, such as those used in cardiac pacemakers, is treated in Chapter 7. The voltages and currents produced by these active processes in the surrounding extracellular space is described in Chapter 8.

Robert Plonsey is a Pfizer-Pratt Professor Emeritus of Biomedical Engineering at Duke University. He received the PhD in Electrical Engineering from University of California in 1955. He received the Dr. of Technical Science from the Slovak Academy of Science in 1995 and was Chair, Department of Biomedical Engineering, Case Western Reserve, University, 1976-1980, Professor 1968-1983. Awards: Fellow of AAAS, William Morlock Award 1979, Centennial Medal 1984, Millenium Medal 2000, from IEEE Engineering in Medicine and Biology Society, Ragnar Granit Prize 2004, (First) Merit Award, 1997, International Union for Physiological & Engineering Science in Medicine, the Theo Pilkington Outstanding Educator Award, 2005, Distinguished Service award, Biomedical Engineering Science, 2004, ALZA distinguished lecturer, 1988. He was elected Member, National Academy of Engineering, 1986 ("For the application of electromagnetic field theory to biology, and for distinguished leadership in the emerging profession of biomedical engineering"). Roger C. Barr is Professor of Biomedical Engineering and Associate Professor of Pediatrics at Duke University. In past years he served as the Chair of the Department of Biomedical Engineering at Duke, and then as Vice President and President of the IEEE Engineering in Medicine and Biology Society. He received the Duke University Scholar-Teacher Award in 1991. He is the author of more than 100 research papers about topics in bioelectricity and is a Fellow of the IEEE and American College of Cardiology. This text is a product of interactions with students, and in this regard he has taught the bioelectricity course sequence numerous times.

Vector Analysis.- Sources and Fields.- Bioelectric Potentials.- Channels.- Action Potentials.- Impulse Propagation.- Electrical Stimulation.- Extracellular Fields.- Cardiac Electrophysiology.- The Neuromuscular Junction.- Skeletal Muscle.- Functional Electrical Stimulation.- Exercises.

Zusatzinfo XIV, 528 p. With CD-ROM.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
ISBN-10 0-387-48864-2 / 0387488642
ISBN-13 978-0-387-48864-6 / 9780387488646
Zustand Neuware
Haben Sie eine Frage zum Produkt?