Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mechanical Properties of Human Tissues - Arnab Chanda, Gurpreet Singh

Mechanical Properties of Human Tissues (eBook)

eBook Download: PDF
2023 | 2023
X, 92 Seiten
Springer Nature Singapore (Verlag)
978-981-99-2225-3 (ISBN)
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This monograph brings forth biomechanical research methods and outcomes on human tissue experiments such as those of the brain and the heart under a single umbrella. Different mechanical characterization techniques employed in human tissue property estimation are presented in detail. The contents also focus on a hyperelastic constitutive model (e.g., Mooney-Rivlin, Ogden) for both isotropic and anisotropic tissue characterization. It also discusses energy dissipation in soft tissues and associated viscoelasticity. Human tissues, including skin, muscles, connective tissues, and tissues in all functional organs are listed and their mechanical properties are presented in detail. These tissue properties are indispensable for computational modeling of biological systems, validation of biomechanical tissue testing, medical simulation through development of artificial phantoms and surrogates, and testing of medical devices and interventions. This book will serve as a key reference for research in tissue engineering & biomedical engineering, medical simulation, biomechanics, finite element modeling of biological systems, biomaterials, biotechnology, implant and medical device development, and healthcare wearables.




Dr. Arnab Chanda is an Assistant Professor in the Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, India and a joint faculty at the Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS) Delhi, India. He is also the founder of a startup company BIOFIT Technologies LLC, USA.

Dr. Chanda is an expert in the fabrication and mechanical characterization of tissue mimics, and has previously developed artificial surrogates for human skin, muscles, brain, artery, and plantar fascia, and tested them at both lab and clinical settings.

These experimental models have been used extensively for surgical training and to study a wide range of injury scenarios. To date, he has received young researcher awards from ASME and MHRD, holds 7 US patents, 2 Indian patents, has authored over 50 articles in reputed international journals. Currently, Dr. Chanda heads the 'Disease and Injury Mechanics Lab (DIML)', where his team is working on developing cutting-edge healthcare technologies for disease mitigation (i.e., diabetic ulceration, cerebral aneurysm, and severe skin burns) in India. They also aim to fabricate low-cost artificial organs for surgical training.

Gurpreet Singh is a Ph.D. Scholar in the Centre for Biomedical Engineering, Indian Institute of Technology (IIT) Delhi, India. He is a recipient of the most prestigious Ph.D. fellowship in India, the Prime Minister's Research Fellowship (PMRF), in the May 2021 cycle.

His research interests are soft tissue mechanics, artificial tissues, biomimetics, and computational biomechanics. He is currently developing artificial human tissues for injury and disease modeling.

Previously, much of his work has been on improving the surface characteristics and bioactivity of metallic biomaterials, with research interests including surface engineering, materials science, biomaterials, and non-conventional machining processes. He worked on the surface modification of metallic biomaterials using electro-discharge machining, where he studied the bioactivity of modified surfaces in terms of wear resistance, corrosion resistance, and other biological responses. He has contributed 34 research papers and book chapters to leading international journals/conferences. He is also serving as a reviewer for prominent journals of national and international repute.



This monograph brings forth biomechanical research methods and outcomes on human tissue experiments such as those of the brain and the heart under a single umbrella. Different mechanical characterization techniques employed in human tissue property estimation are presented in detail. The contents also focus on a hyperelastic constitutive model (e.g., Mooney-Rivlin, Ogden) for both isotropic and anisotropic tissue characterization. It also discusses energy dissipation in soft tissues and associated viscoelasticity. Human tissues, including skin, muscles, connective tissues, and tissues in all functional organs are listed and their mechanical properties are presented in detail. These tissue properties are indispensable for computational modeling of biological systems, validation of biomechanical tissue testing, medical simulation through development of artificial phantoms and surrogates, and testing of medical devices and interventions. This book will serve as a key reference forresearch in tissue engineering & biomedical engineering, medical simulation, biomechanics, finite element modeling of biological systems, biomaterials, biotechnology, implant and medical device development, and healthcare wearables.
Erscheint lt. Verlag 3.5.2023
Reihe/Serie Materials Horizons: From Nature to Nanomaterials
Materials Horizons: From Nature to Nanomaterials
Zusatzinfo X, 92 p. 43 illus., 28 illus. in color.
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Chemie
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Schlagworte Biomechanics • Healthcare • hyperelastic • Medical Models • Soft tissue • Tissue Simulants
ISBN-10 981-99-2225-9 / 9819922259
ISBN-13 978-981-99-2225-3 / 9789819922253
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Volume One

von MD William A. Seeds

eBook Download (2020)
Distributed By Ingram Spark (Verlag)
CHF 16,60