Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Handbook of Statistical Bioinformatics (eBook)

eBook Download: PDF
2022 | 2nd ed. 2022
VIII, 410 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-65902-1 (ISBN)

Lese- und Medienproben

Handbook of Statistical Bioinformatics -
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology.



Henry Horng-Shing Lu is a Professor at National Chiao Tung University (NCTU), which is merged with National Yang Ming Chiao Tung University (NYCU). He has served as the Vice President for Academic Affairs and Dean for College of Science in NCTU. He is an Elected Member of the International Statistical Institute and Principal Fellow of the High Education Academy. His research interests include statistics, data science, machine learning, image science, biomedical studies and industrial applications.

Bernhard Schölkopf is a member of the Max Planck Society and the Director of the Department of Empirical Inference at the Max Planck Institute for Intelligent Systems in Tübingen, Germany. He is also an Honorary Professor of Machine Learning at the Technical University Berlin. His scientific interests are in the field of machine learning and inference from empirical data, in particular, in machine learning methods for extracting statistical and causal regularities.

Martin T. Wells is the Charles A. Alexander Professor of Statistical Sciences at Cornell University in Ithaca, NY, USA. He is also a Professor of Biostatistics and Epidemiology at Weill Medical School, an Elected Member of the Cornell Law School Faculty, as well as the Director of Research in the School of Industrial and Labor Relations. His research fields and topics include biostatistics, Bayesian statistics, decision theory, epidemiology, high-dimensional data analysis, statistical bioinformatics, and empirical legal studies.

Hongyu Zhao is the Ira V. Hiscock Professor of Biostatistics and Professor of Statistics and Data Science and Genetics at Yale University, New Haven, CT, USA where he also serves as the Director of the Center for Statistical Genomics and Proteomics. His research interests include statistical genomics, computational biology, statistical proteomics, risk prediction, high dimensional data analysis, and network modeling and inference.

Erscheint lt. Verlag 8.12.2022
Reihe/Serie Springer Handbooks of Computational Statistics
Springer Handbooks of Computational Statistics
Zusatzinfo VIII, 410 p. 80 illus., 67 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie
Naturwissenschaften Biologie
Schlagworte Bioinformatics • Biostatistics • Computational Biology • Computational Statistics • Massive Data Sets • network analysis • probabilistic modeling • single-cell analysis • Statistical Bioinformatics • Statistical Methods • statistical modeling • systems biology
ISBN-10 3-662-65902-6 / 3662659026
ISBN-13 978-3-662-65902-1 / 9783662659021
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
CHF 24,40