Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Causal Inference

What If
Buch | Softcover
312 Seiten
2023
CRC Press (Verlag)
978-0-367-71133-7 (ISBN)
CHF 67,95 inkl. MwSt
  • Noch nicht erschienen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. The text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.
Provides a cohesive presentation of concepts and methods for causal inference that are currently scattered across journals in several disciplines
Emphasizes the need to take the causal question seriously enough to articulate it with sufficient precision
Shows that causal inference from observational data cannot be reduced to a collection of recipes for data analysis, as subject-matter knowledge is required to justify the necessary assumptions
Describes causal diagrams, both directed acyclic graphs and single-world intervention graphs, to represent causal inference problems
Describes various data analysis approaches to estimate the causal effect of interest, including the g-formula, inverse probability weighting, g-estimation, instrumental variable estimation, and propensity score adjustment
Includes ‘Fine Points’ and ‘Technical Points’ throughout to elaborate on certain key topics, as well as software and real data examples

Miguel Hernán conducts research to learn what works to improve human health. Together with his collaborators, he designs analyses of healthcare databases, epidemiologic studies, and randomized trials. Miguel teaches clinical epidemiology at the Harvard-MIT Division of Health Sciences and Technology, and causal inference methodology at the Harvard T.H. Chan School of Public Health, where he is the Kolokotrones Professor of Biostatistics and Epidemiology. His edX course "Causal Diagrams" is freely available online and widely used for the training of researchers. James Robins is a world leader in the development of analytic methods for drawing causal inferences from complex observational and randomized studies with time-varying treatments. His contributions include new classes of estimators based on the g-formula, inverse probability weighting of marginal structural models, and g-estimation of structural nested models. He teaches advanced epidemiologic methods at the Harvard T.H. Chan School of Public Health, where he is the Mitchell L. and Robin LaFoley Dong Professor of Epidemiology.

1. A definition of causal effect. 2. Randomized experiments. 3. Observational studies. 4. Effect modification. 5. Interaction. 6. Graphical representation of causal effects. 7. Confounding. 8. Selection bias. 9. Measurement bias. 10. Random variability. 11. Why model? .12. IP weighting and marginal structural models. 13. Standardization and the parametric g-formula. 14. G-estimation of structural nested models. 15. Outcome regression and propensity scores. 16. Instrumental variable estimation. 17. Causal survival analysis. 18. Variable selection for causal inference. 19. Time-varying treatments. 20. Treatment-confounder feedback. 21. G-methods for time-varying treatments. 22. Target trial emulation. 23. Causal mediation.

Erscheint lt. Verlag 15.8.2023
Zusatzinfo 21 Tables, black and white; 128 Line drawings, black and white; 128 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 210 x 280 mm
Themenwelt Mathematik / Informatik Mathematik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Naturwissenschaften Biologie
ISBN-10 0-367-71133-8 / 0367711338
ISBN-13 978-0-367-71133-7 / 9780367711337
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein überfälliges Gespräch zu einer Pandemie, die nicht die letzte …

von Christian Drosten; Georg Mascolo

Buch | Hardcover (2024)
Ullstein Buchverlage
CHF 34,95

von Matthias Egger; Oliver Razum; Anita Rieder

Buch | Softcover (2021)
De Gruyter (Verlag)
CHF 67,50