Epistasis
Springer-Verlag New York Inc.
978-1-0716-0949-1 (ISBN)
Authoritative and cutting-edge, Epistasis: Methods and Protocols aims to ensure successful results in the further study of this vital field.
"Simulating Evolution in Asexual Populations with Epistasis” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Mass-based Protein Phylogenetic Approach to Identify Epistasis.- SNPInt-GPU: Tool for epistasis testing with multiple methods and GPU acceleration.- Epistasis-based Feature Selection Algorithm.- W-test for Genetic Epistasis Testing.- The Combined Analysis of Pleiotropy and Epistasis (CAPE).- Two-Stage Testing for Epistasis: Screening and Veri_cation.- Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.- Phenotype Prediction under Epistasis.- Simulating Evolution in Asexual Populations with Epistasis.- Protocol for Construction of Genome-Wide Epistatic SNP Networks using WISH-R Package.- Brief survey on Machine Learning in Epistasis.- First-Order Correction of Statistical Significance for Screening Two-Way Epistatic Interactions.- Gene-Environment Interaction: AVariable Selection Perspective.- Using C-JAMP to Investigate Epistasis and Pleiotropy.- Identifying the Significant Change of Gene Expression in Genomic Series Data.- Analyzing High-Order Epistasis from Genotype-phenotype Maps Using ’Epistasis’ Package.- Deep Neural Networks for Epistatic Sequences Analysis.- Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.- A Belief Degree Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.- Epistasis Detection Based on Epi-GTBN.- Epistasis Analysis: Classification through Machine Learning Methods.- Genetic Interaction Network Interpretation: A Tidy Data Science Perspective.- Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.
Erscheinungsdatum | 25.03.2022 |
---|---|
Reihe/Serie | Methods in Molecular Biology ; 2212 |
Zusatzinfo | 85 Illustrations, color; 82 Illustrations, black and white; X, 402 p. 167 illus., 85 illus. in color. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete |
Studium ► 2. Studienabschnitt (Klinik) ► Humangenetik | |
Schlagworte | Bioinformatics • eQTL Mapping • GWAS • Synthetic genetic arrays • Translational Medicine |
ISBN-10 | 1-0716-0949-1 / 1071609491 |
ISBN-13 | 978-1-0716-0949-1 / 9781071609491 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich