Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Introducing HR Analytics with Machine Learning (eBook)

Empowering Practitioners, Psychologists, and Organizations
eBook Download: PDF
2021 | 1st ed. 2021
VII, 271 Seiten
Springer International Publishing (Verlag)
978-3-030-67626-1 (ISBN)

Lese- und Medienproben

Introducing HR Analytics with Machine Learning - Christopher M. Rosett, Austin Hagerty
Systemvoraussetzungen
128,39 inkl. MwSt
(CHF 125,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book directly addresses the explosion of literature about leveraging analytics with employee data and how organizational psychologists and practitioners can harness new information to help guide positive change in the workplace. In order for today's organizational psychologists to successfully work with their partners they must go beyond behavioral science into the realms of computing and business acumen. Similarly, today's data scientists must appreciate the unique aspects of behavioral data and the special circumstances which surround HR data and HR systems. Finally, traditional HR professionals must become familiar with research methods, statistics, and data systems in order to collaborate with these new specialized partners and teams. Despite the increasing importance of this diversity of skill, many organizations are still unprepared to build teams with the comprehensive skills necessary to have high performing HR Analytics functions. And importantly, all these considerations are magnified by the introduction and acceleration of machine learning in HR.

This book will serve as an introduction to these areas and provide guidance on building the connectivity across domains required to establish well-rounded skills for individuals and best practices for organizations when beginning to apply advanced analytics to workforce data. It will also introduce machine learning and where it fits within the larger HR Analytics framework by explaining many of its basic tenets and methodologies. By the end of the book, readers will understand the skills required to do advanced HR analytics well, as well as how to begin designing and applying machine learning within a larger human capital strategy.



Christopher Rosett is Senior Director of HR Analytics and Reporting at Comcast NBC Universal. He is responsible to design and drive HR analytics and reporting for 10,000+ of Comcast's technology and customer experience employees as well as support the measurement of strategic HR initiatives.

Christopher M. Rosett has experience at several Fortune 100 companies, including Comcast, Verizon, and PepsiCo. He has built expertise from within HR specializations including organizational development, talent management, learning and development, selection strategy, and HR analytics.

Christopher's academic interests lie in industrial and organizational psychology, in which he has published and presented throughout his career on such topics such as person-environment fit, corporate communication strategy, building analytics functions, and machine learning in HR. He lives in the suburbs of Philadelphia with his wife and two sons.

Austin Hagerty is Director of Data and AI for Microsoft.  He leads initiatives to promote growth in data science cloud usage through partnerships and delivery channels.  Austin also teaches data science and cybersecurity bootcamps at the University of Texas at Austin.

Austin has over twenty years of technology experience spanning a variety of roles and industries.  He has extensive knowledge of workforce data and analytics, having built HR data science functions for multiple organizations.  Austin has been a vocal advocate for applying machine learning techniques to solve workforce problems and improve the employee experience.
Austin is an industry expert and sought-after speaker, actively presenting at and chairing conferences across the country. He resides in Austin, Texas with his wife and daughter.

Erscheint lt. Verlag 14.6.2021
Zusatzinfo VII, 271 p. 62 illus., 8 illus. in color.
Sprache englisch
Themenwelt Geisteswissenschaften
Medizin / Pharmazie Medizinische Fachgebiete Psychiatrie / Psychotherapie
Schlagworte Artificial Intelligence • Big Data • HR statistical learning • HR statistical models • Human Resources • machine learning • organizational psychology • People Analytics • Statistical Learning • Workforce Analytics
ISBN-10 3-030-67626-9 / 3030676269
ISBN-13 978-3-030-67626-1 / 9783030676261
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich