Introduction to Abstract Algebra, Third Edition
CRC Press (Verlag)
978-1-138-40173-0 (ISBN)
The first and second editions of this successful textbook have been highly praised for their lucid and detailed coverage of abstract algebra. In this third edition, the author has carefully revised and extended his treatment, particularly the material on rings and fields, to provide an even more satisfying first course in abstract algebra.
Thomas A. Whitefaw Department of Mathematics University of Glasgow.
Chapter One SETS AND LOGIC -- 1. Some very general remarks -- 2. Introductory remarks on sets -- 3. Statements and conditions; quantifiers -- 4. The implies sign () -- 5. Proof by contradiction -- 6. Subsets -- 7. Unions and intersections -- 8. Cartesian product of sets -- EXERCISES -- Chapter Two SOME PROPERTIES OF -- 9. Introduction -- 10. The well-ordering principle -- I I. The division algorithm -- 12. Highest common factors and Euclid’s algorithm -- 13. The fundamental theorem of arithmetic -- 14. Congruence modulo m (mE f4J) -- EXERCISES -- Chapter Three EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES -- 15. Relations in general -- 16. Equivalence relations -- 17. Equivalence classes -- 18. Congruence classes -- 19. Properties of l,, as an algebraic system -- EXERCISES -- Chapter Four MAPPINGS -- 20. Introduction -- 21. The image of a subset of the domain; surjcctions -- 22. Injections; bijections; inverse of a bijection -- 23. Restriction of a mapping -- 24. Composition of mappings -- 25. Some further results and examples on mappings -- EXERCISES -- Chapter Five SEMIGROUPS -- 26. Introduction -- 27. Binary operations -- 28. Associativity and commutativity -- 29. Semigroups: definition and examples -- 30. Powers of an element in a semigroup -- 31. Identity elements and inverses -- 32. Subsemigroups -- EXERCISES -- Chapter Six AN INTRODUCTION TO GROUPS -- 33. The definition of a group -- 34. Examples of groups -- 35. Elementary consequences of the group axioms -- 36. Subgroups -- 37. Some important general examples of subgroups -- 38. Period of an element -- 39. Cyclic groups -- EXERCISES -- Chapter Seven COSETS AND LAGRANGE’S THEOREM ON FINITE GROUPS -- 40. Introduction -- 41. Multiplication of subsets of a group -- 42. Another approach to cosets -- 43. Lagrange’s theorem -- 44. Some consequences of Lagrange’s theorem -- EXERCISES -- Chapter Eight HOMOMORPHISMS, NORMAL SUBGROUPS, AND QUOTIENT GROUPS -- 45. Introduction -- 46. Isomorphic groups -- 47. Homomorphisms and their elementary properties -- 48. Conjugacy -- 49. Normal subgroups -- 50. Quotient groups -- 51. The quotient group G/Z -- 52. The first isomorphism theorem -- EXERCISES -- Chapter Nine THE SYMMETRIC GROUP S -- 53. Introduction -- 54. Cycles -- 55. Products of disjoint cycles -- 56. Periods of elements of Sft -- 57. Conjugacy in S1 -- 58. Arrangement of the objects 1,2,...,n -- 59. The alternating character, and alternating groups -- 60. The simplicity of A5 -- EXERCISES -- Chapter Ten THE FUNDAMENTALS OF RING THEORY -- 61. Introduction -- 62. The definition of a ring and its elementary consequences -- 63. Special types of ring and ring elements -- 64. Subrings and subtIelds -- 65. Ring homomorphisms -- 66. Ideals -- 67. Principal ideals in a commutative ring with a one -- 68. Factor rings -- 69. Characteristic of an integral domain or field -- 70. The field of fractions of an integral domain -- EXERCISES -- Chapter Eleven POLYNOMIALS AND FIELDS -- 71. Introduction -- 72. Polynomial rings -- 73. Some properties of F[X], where F is a field -- 74 Generalities on factorization -- 75. Further properties of F[XJ, where F is a field -- 76. Some matters of notation -- 77. Minimal polynomials and the structure of F(c) -- 78. Some elementary properties of finite fields -- 79. Construction of fields by root adjunction -- 80. Degrees of field extensions -- 81. Epilogue -- EXERCISES -- BIBLIOGRAPHY -- APPENDIX TO EXERCISES -- INDEX.
Erscheinungsdatum | 04.07.2018 |
---|---|
Reihe/Serie | Chapman Hall/CRC Mathematics Series |
Verlagsort | London |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 480 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geschichte der Mathematik | |
Studium ► 1. Studienabschnitt (Vorklinik) ► Histologie / Embryologie | |
ISBN-10 | 1-138-40173-0 / 1138401730 |
ISBN-13 | 978-1-138-40173-0 / 9781138401730 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich