Supramolecular Chemistry of Biomimetic Systems (eBook)
IX, 394 Seiten
Springer Singapore (Verlag)
978-981-10-6059-5 (ISBN)
This book investigates the latest developments in supramolecular assembly systems for mimicking biological structures and functions. Consisting of 14 chapters, it covers various assembly systems, such as polysaccharides, peptides, proteins, biopolymers, natural materials and various hybrid systems. Further, it focuses on different types of supramolecular systems with particular functions or structures that are relevant to living systems. A number of modern techniques used to study the supramolecular systems, such as total internal reflection fluorescence microscopy (TIRFM) and two-photon confocal microscopy, are also introduced in detail.
Unlike conventional books on supramolecular assemblies, this book highlights the functions of the assembly systems, particularly their biological applications. As such, it offers a valuable resource for experienced researchers, as well as graduate students working in the field of supramolecular chemistry and biomimetic systems.
Junbai Li received his PhD from the Department of Chemistry, Jilin University in 1992. He then served as a postdoctoral fellow at the Interface Department of the Max Planck Institute of Colloids and Interfaces in Germany from 1994 to 1996. He is currently a professor at the Institute of Chemistry, the Chinese Academy of Sciences. He has been an editor of Colloids & Surfaces A since 2005 and became editor-in-chief in 2017. He has also been a section editor of Current Opinion in Colloid & Interface Science since 2006. His main research interests are molecular assemblies of biomimetic systems, self-assembly, biointerfaces, and the design and synthesis of bioinspired materials with various nanostructures.
This book investigates the latest developments in supramolecular assembly systems for mimicking biological structures and functions. Consisting of 14 chapters, it covers various assembly systems, such as polysaccharides, peptides, proteins, biopolymers, natural materials and various hybrid systems. Further, it focuses on different types of supramolecular systems with particular functions or structures that are relevant to living systems. A number of modern techniques used to study the supramolecular systems, such as total internal reflection fluorescence microscopy (TIRFM) and two-photon confocal microscopy, are also introduced in detail.Unlike conventional books on supramolecular assemblies, this book highlights the functions of the assembly systems, particularly their biological applications. As such, it offers a valuable resource for experienced researchers, as well as graduate students working in the field of supramolecular chemistry and biomimetic systems.
Junbai Li received his PhD from the Department of Chemistry, Jilin University in 1992. He then served as a postdoctoral fellow at the Interface Department of the Max Planck Institute of Colloids and Interfaces in Germany from 1994 to 1996. He is currently a professor at the Institute of Chemistry, the Chinese Academy of Sciences. He has been an editor of Colloids & Surfaces A since 2005 and became editor-in-chief in 2017. He has also been a section editor of Current Opinion in Colloid & Interface Science since 2006. His main research interests are molecular assemblies of biomimetic systems, self-assembly, biointerfaces, and the design and synthesis of bioinspired materials with various nanostructures.
Preface 5
Contents 6
About the Editor 8
Introduction to Supramolecular Chemistry and Biomimetic Systems 9
1 Molecular Biomimetics and Molecular Assembly 10
Abstract 10
1.1 Nanoarchitectonics of Biomimetic Membranes 11
1.2 Biomacromolecules Based Molecular Assembly 11
1.3 Molecular Assembly of Motor Proteins and Artificial Micro/Nanomotors 12
1.4 Hierarchical Dendrimer, Polyoxometalates Complexes and Inorganic-Organic Hybrid Systems 13
2 Advantages of Self-assembled Supramolecular Polymers Toward Biological Applications 15
Abstract 15
2.1 Introduction 16
2.1.1 Self-assembly in Nature 16
2.1.2 Self-assembly and Supramolecular Chemistry 17
2.2 Supramolecular Materials 18
2.2.1 Cyclic Peptide Nanotubes 18
2.2.1.1 Design of Cyclic Peptide Nanotubes 18
2.2.1.2 Application of Cyclic Peptide Nanotubes 19
2.2.2 Peptide Amphiphiles 21
2.2.3 Surfactant-Like Peptides 23
2.2.3.1 Anionic Surfactants 23
2.2.3.2 Cationic Surfactants 24
2.2.3.3 Nonionic Surfactants 24
2.2.3.4 Amphoteric or Zwitterionic Surfactants 24
2.2.3.5 Gemini Surfactants 24
2.2.3.6 Applications of Surfactant-like Peptides 25
2.2.3.7 Amyloid Nanofibrils 28
2.2.4 Short Aromatic Peptides 28
2.2.4.1 The Short Aromatic Peptide Unique Physical Properties 29
2.2.4.2 Low Molecular Weight Hydrogels 30
2.2.4.3 Applications of Short Aromatic Peptides 32
2.2.5 Coiled Coils 33
2.3 Conclusions and Future Perspectives 34
References 35
Biomimetic Membranes 42
3 Nanoarchitectonics of Biomimetic Membranes 43
Abstract 43
3.1 Introduction: Nanoarchitectonics 43
3.2 Two-Dimensional Biomimetic Membrane 45
3.2.1 Molecular Recognition 45
3.2.2 Receptor Tuning 49
3.2.3 Nanomaterial Film for Life Control 52
3.3 Layer-by-Layer Biomimetic Membrane 53
3.3.1 Bioreactor 54
3.3.2 Hierarchic Assembly 55
3.3.3 Sensing and Drug Delivery 57
3.4 Summary 61
References 61
Biomolecules Based Molecular Assembly 64
4 Polysaccharides-Based Microcapsules 65
Abstract 65
4.1 Introduction 65
4.2 The Structure and Properties of Polysaccharides 66
4.3 Preparation of Multifunctional Polysaccharide-Based Microcapsules 69
4.3.1 Polysaccharide Microcapsules Fabricated via Electrostatic Interaction 69
4.3.2 Hydrogen-Bonded Polysaccharide Microcapsules 70
4.3.3 Covalent-Bonded Polysaccharide Microcapsules 70
4.3.3.1 Glutaraldehyde Crosslinked Polysaccharide Microcapsules 71
4.3.3.2 Aldehyde Polysaccharide-Crosslinked Polysaccharide Microcapsules 71
4.3.4 Ionic-Crosslinked Polysaccharide Microcapsules 73
4.3.5 Polysaccharide Microcapsules Fabricated via Host–Guest Interaction 74
4.4 Biomedical Applications of the Polysaccharide-Based Microcapsules 75
4.4.1 Cancer Therapy 75
4.4.1.1 Specific Targeting to Tumor 76
4.4.1.2 Controlled Drug Release 77
4.4.2 Blood Substitutes 81
4.5 Conclusions 84
Acknowledgements 84
References 84
5 Hemoglobin-Based Molecular Assembly 87
Abstract 87
5.1 Introduction 88
5.2 Hemoglobin—An Oxygen-Carrying Protein 88
5.3 Covalent LbL Assembly of Hemoglobin Protein 90
5.3.1 Hemoglobin Protein Hollow Shells Fabricated Through Covalent LbL Assembly 91
5.3.2 Glucose-Sensitive Microcapsules from Glutaraldehyde Cross-Linked Hemoglobin and Glucose Oxidase 92
5.3.3 Assembly of Lipid Bilayers on Covalently LbL-Assembled Hemoglobin Capsules as a Biomimetic Membrane System 94
5.3.4 Assembled Hemoglobin and Catalase Nanotubes for the Treatment of Oxidative Stress 96
5.4 Hemoglobin-Based Nanoarchitectonic Assemblies as Artificial Blood Substitutes 98
5.4.1 Highly Loaded Hemoglobin Spheres as Promising Artificial Oxygen Carriers 101
5.4.2 Construction and Evaluation of Hemoglobin-Based Capsules as Blood Substitutes 103
5.4.3 High Impact of Uranyl Ions (UO22+) on Carrying-Releasing Oxygen Capability of Hemoglobin-Based Blood Substitutes 106
5.5 Conclusions and Perspectives 107
References 108
6 Photosystem II Based Multilayers 111
Abstract 111
6.1 Introduction 111
6.1.1 Structure of Photosystem II 112
6.1.2 Function of Photosystem II 112
6.1.3 Applications of Photosystem II 115
6.1.3.1 Photosystem II Based Biosensors 115
6.1.3.2 Photosystem II Based Water Splitting Systems 116
6.2 Photosystem II Based Multilayers for Photoanodes 116
6.2.1 Integration Photosystem II with a Self-assembled Monolayer 117
6.2.2 Integration of Photosystem II with Polymer 119
6.2.3 Layer-by-Layer Assembly of Photosystem II Based Multilayers 121
6.2.4 Integration of Photosystem II with Semiconductor 123
6.3 Photosystem II for Complete Solar Energy Harvesting Systems 127
6.4 Other Photosystem II Based Energy Conversion Systems 129
6.5 Summary 132
References 132
7 Peptide-Based Supramolecular Chemistry 136
Abstract 136
7.1 Introduction 137
7.2 Self-assembly of Peptides 139
7.2.1 Controlled Self-assembly of Peptides 139
7.2.2 Structural Transition of Self-assembled Peptide Nanostructures 140
7.2.3 Solvent-Induced Structural Transition of Peptide Nanostructures 142
7.2.4 Self-assembled Peptide Crystals with Optical Waveguiding Properties 144
7.3 Peptide-Modulated Self-assembly of Photoactive Molecules 146
7.3.1 Peptide-Modulated Self-assembly of Porphyrins 146
7.3.2 Peptide-Modulated Self-assembly of Photosensitizers and Azobenzenes 149
7.4 Self-assembly of Peptide-Inorganic Hybrid Nanomaterials 150
7.4.1 Peptide-Modulated Self-assembly of Polyoxometalates 150
7.4.2 Peptide-Modulated Self-assembly of Quantum Dots 152
7.5 Schiff Base Interaction-Induced Self-assembly of Peptides 153
7.6 Applications of Peptide-Based Supramolecular Nanomaterials 154
7.6.1 Applications in Biomimetic Photosystem 154
7.6.2 Applications in Photocatalysis 156
7.6.3 Applications in Biomedicine 156
7.7 Summary 159
Acknowledgements 160
References 160
8 Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances 165
Abstract 165
8.1 Introduction 165
8.2 Surface Coating of Cellulose Substances with Inorganic Substrates 167
8.2.1 Deposition of Thin Metal Oxide Films 167
8.2.2 Modification with Nanoparticles 171
8.3 Self-assembly of Polymers on Cellulose Fibers 175
8.3.1 Self-assembly of Conjugated Polymers 175
8.3.2 Modification with Other Polymers 178
8.4 Molecular Monolayer Nanocoating on Cellulose Fibers 181
8.4.1 Self-assembly of Long Alkyl Chain Molecules 181
8.4.2 Self-assembly of Functional Molecules for Colorimetric Sensors 185
8.4.3 Modification with Other Small Molecules 190
8.5 Biomacromolecule Assembly in Cellulose Substances 190
8.6 Sp2-Hybridized Carbon Assembly in Cellulose Substances 193
8.7 Conclusions 196
Acknowledgements 197
References 197
Molecular Assembly of Motor Proteins and Artificial Micro-/Nanomotors 203
9 Directional Transportation of Assembled Molecular Linear Motors 204
Abstract 204
9.1 Introduction 204
9.2 Structure, Classification, and Function of Myosin 205
9.3 Characterization of Myosin 207
9.3.1 ATPase Activity 208
9.3.2 Kinetic Analysis of Myosin ATPase Activity and Duty-Ratio 208
9.3.3 In Vitro Actin-Gliding Assay 209
9.3.4 Single Molecular Motility Assay 211
9.3.5 Processivity 212
9.3.6 Directionality 212
9.4 Smooth Muscle Myosin-2 (SmM) 214
9.4.1 The Key Coiled-Coil Region Stabilizes the Double-Headed Structures of SmM 215
9.4.2 Cooperation Between the Two Heads of SmM Is Essential for Full Activation of the Motor Function by Phosphorylation 215
9.5 Myosin-5 218
9.5.1 Tail-Inhibition Model 219
9.5.2 Regulation of Myo5a by Cargo-Binding Protein 221
9.5.3 Ca2+ Regulates Myo5a Motor Function via the CaM Bound to IQ1 223
9.6 Myosin-19 224
9.6.1 The Light Chains of Myo19 are RLC9 and RLC12b 225
9.6.2 Myo19 is a Plus-End-Directed Molecular Motor 228
9.6.3 Myo19 is a High-Duty Ratio Molecular Motor 228
9.7 Concluding Remarks and Future Perspectives 230
References 231
10 Reconstitution of Motor Protein ATPase 235
Abstract 235
10.1 Introduction 235
10.2 ATPase Family: Types, Structure, and Components 237
10.3 In Vitro Assembly of ATPase Enzyme Mediated Devices 239
10.3.1 The Rotation of ATPase 240
10.3.2 ATP Synthesis in ATPase Incorporated Liposomes 242
10.3.3 ATPase-Linked Polymeric Structures 243
10.4 External Field Modulated ATP Synthesis 245
10.4.1 Magnetic Field-Driven ATP Synthesis 246
10.4.2 Light Triggered ATP Synthesis 248
10.4.3 Electric Field-Driven ATP Synthesis 250
10.5 Conclusions and Perspectives 252
References 252
11 Controlled Molecular Assembly Toward Self-propelled Micro-/Nanomotors 257
Abstract 257
11.1 Introduction 258
11.2 Construction of Layer-by-Layer Assembled MNMs 259
11.3 Construction of MNMs Derived from Natural Aggregates 266
11.4 On-Demand Motion of Self-assembled MNMs 268
11.5 Biomedical Applications of Self-assembled MNMs 273
11.6 Summary 276
Acknowledgements 276
References 276
Hierarchical Dendrimer, Polyoxometalates Complexes and Inorganic-organic Hybrid Systems 280
12 Functional Dendrimer-Based Vectors for Gene Delivery Applications 281
Abstract 281
12.1 Introduction 281
12.2 Alkylated PAMAM Dendrimers for Gene Delivery 283
12.3 Au DNEPs for Gene Delivery 284
12.3.1 Acetylated Au DNEPs for Gene Delivery 287
12.3.2 PEGylated Au DNEPs for Gene Delivery 289
12.3.3 ?-CD-Modified Au DENPs for Gene Delivery 293
12.4 Targeted Au DENPs for Gene Delivery 294
12.4.1 FA-Targeted Au DENPs for Gene Delivery 295
12.4.2 RGD-Targeted Au DENPs for Gene Delivery 296
12.5 Conclusion and Outlooks 299
Acknowledgments 299
References 300
13 Polyoxometalates and Their Complexes Toward Biological Application 306
Abstract 306
13.1 The Interaction of POMs with Amino Acids, Peptides, and Proteins 307
13.1.1 The Introduction of POMs 307
13.1.2 The Interaction of POMs with Amino Acids 309
13.1.3 The Interaction of POMs with Peptides 311
13.1.4 The Interaction of POMs with Proteins 312
13.2 The Crystallography of Proteins by POMs 315
13.2.1 POMs as Crystallization Additives 315
13.2.2 The Usage of POMs in Protein Crystallography 316
13.2.3 The Advantages of POMs on Protein Crystallization 318
13.3 The Inhibiting Effect of POMs 319
13.3.1 Stabilization of POMs in Physiological Solution 319
13.3.2 POMs as the Inhibitors of Enzymes 320
13.3.3 The Restriction of POMs for Self-assembly of Proteins 323
13.4 The POMs and POM Complexes for Enzyme Mimicking 326
13.4.1 Catalytic Hydrolysis of POMs for Peptides 326
13.4.2 Selected Hydrolysis of POMs for Proteins 329
13.5 The Healing Effects of POMs 330
13.5.1 The POMs’ Bioactivity for Antivirus 331
13.5.2 The POMs with Antibacterial Property 332
13.5.3 The POMs for Potential Antitumor Drugs 334
13.6 The POMs and Complexes for Bio-Imaging 336
13.6.1 POMs and Complexes for Magnetic Resonance Imaging 337
13.6.2 POM Complex for Bimodal Imaging 338
13.7 Summary and Outlook 339
References 340
14 Inorganic-Organic Hybrid Materials Based on Nanopolyoxometalates 350
Abstract 350
14.1 Introduction to Developed POMs 351
14.1.1 Structures of POMs 351
14.1.2 Properties of POMs 353
14.1.3 Applications of POMs 356
14.2 Supramolecular Architectures Assembled from Amphiphilic Hybrid Polyoxometalates 358
14.2.1 Multilayer Films Containing POMs by Layer-by-Layer Technique on Planar Substrates 359
14.2.2 Self-patterning Porous Films Composed of POMs-Based Giant Vesicles 362
14.2.3 Robust Onionlike Structures Formed by a Fullerene C60-POM Hybrid 367
14.3 Self-assembled Honeycomb Films of Hydrophobic Surfactant-Encapsulated Clusters (HSECs) at Air/Water Interface 372
14.3.1 Fabricating Honeycomb Films of HSECs at Air-Water Interface 373
14.3.2 Mechanism of Self-assembly of SECs into Honeycomb Films 376
14.3.3 Morphology Modulation of Honeycomb Films of SECs 377
14.3.4 Excellent Properties of Honeycomb Films of SECs 380
14.3.5 Conclusion 384
References 385
Erscheint lt. Verlag | 10.10.2017 |
---|---|
Zusatzinfo | IX, 394 p. 168 illus., 113 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Pflege |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Technik ► Medizintechnik | |
Schlagworte | Diffraction-limited fluorescence microscopy • Metal-shadowed electron microscopy • Molecular Assembly • Molecular biomimetics • Molecular motors • Peptides • proteins • Supramolecular assembly system • supramolecular chemistry • Total internal reflection fluorescence microscope (TIRFM) • Two-photon confocal microscopy |
ISBN-10 | 981-10-6059-2 / 9811060592 |
ISBN-13 | 978-981-10-6059-5 / 9789811060595 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich