Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Bayesian Nonparametric Data Analysis (eBook)

eBook Download: PDF
2015 | 2015
XIV, 193 Seiten
Springer International Publishing (Verlag)
978-3-319-18968-0 (ISBN)

Lese- und Medienproben

Bayesian Nonparametric Data Analysis - Peter Müller, Fernando Andres Quintana, Alejandro Jara, Tim Hanson
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.



Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.

Fernando Andrés Quintana is Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile with interests in nonparametric Bayesian analysis and statistical computing. His publications include extensive work on clustering methods and applications in biostatistics.

Alejandro Jara is Associate Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile, with research interests in nonparametric Bayesian statistics, Markov chain Monte Carlo methods and statistical computing. He developed the R package 'DPpackage,' a widely used public domain set of programs for inference under nonparametric Bayesian models.

Timothy Hanson is Professor of Statistics in the Department of Statistics at the University of South Carolina. His research interests include survival analysis, nonparametric regression

Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.Fernando Andrés Quintana is Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile with interests in nonparametric Bayesian analysis and statistical computing. His publications include extensive work on clustering methods and applications in biostatistics.Alejandro Jara is Associate Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile, with research interests in nonparametric Bayesian statistics, Markov chain Monte Carlo methods and statistical computing. He developed the R package "DPpackage," a widely used public domain set of programs for inference under nonparametric Bayesian models.Timothy Hanson is Professor of Statistics in the Department of Statistics at the University of South Carolina. His research interests include survival analysis, nonparametric regression

Preface.- Acronyms.- 1.Introduction.- 2.Density Estimation - DP Models.- 3.Density Estimation - Models Beyond the DP.- 4.Regression.- 5.Categorical Data.- 6.Survival Analysis.- 7.Hierarchical Models.- 8.Clustering and Feature Allocation.- 9.Other Inference Problems and Conclusions.- Appendix: DP package.

Erscheint lt. Verlag 17.6.2015
Reihe/Serie Springer Series in Statistics
Springer Series in Statistics
Zusatzinfo XIV, 193 p. 59 illus., 10 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Schlagworte Bayesian Statistics • Clustering • markov chains • Mixture Models • Monte Carlo • nonparametrics
ISBN-10 3-319-18968-9 / 3319189689
ISBN-13 978-3-319-18968-0 / 9783319189680
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
CHF 16,60
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
CHF 4,35