Nicht aus der Schweiz? Besuchen Sie lehmanns.de

mODa 10 – Advances in Model-Oriented Design and Analysis (eBook)

Proceedings of the 10th International Workshop in Model-Oriented Design and Analysis Held in Łagów Lubuski, Poland, June 10–14, 2013
eBook Download: PDF
2013 | 2013
XX, 249 Seiten
Springer International Publishing (Verlag)
978-3-319-00218-7 (ISBN)

Lese- und Medienproben

mODa 10 – Advances in Model-Oriented Design and Analysis -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book collects the proceedings of the 10th Workshop on Model-Oriented Design and Analysis (mODa). A model-oriented view on the design of experiments, which is the unifying theme of all mODa meetings, assumes some knowledge of the form of the data-generating process and naturally leads to the so-called optimum experimental design. Its theory and practice have since become important in many scientific and technological fields, ranging from optimal designs for dynamic models in pharmacological research, to designs for industrial experimentation, to designs for simulation experiments in environmental risk management, to name but a few. The methodology has become even more important in recent years because of the increased speed of scientific developments, the complexity of the systems currently under investigation and the mounting pressure on businesses, industries and scientific researchers to reduce product and process development times. This increased competition requires ever increasing efficiency in experimentation, thus necessitating new statistical designs. This book presents a rich collection of carefully selected contributions ranging from statistical methodology to emerging applications. It primarily aims to provide an overview of recent advances and challenges in the field, especially in the context of new formulations, methods and state-of-the-art algorithms. The topics included in this volume will be of interest to all scientists and engineers and statisticians who conduct experiments.

Dariusz Uci?ski is a Professor of Automatic Control and Robotics at the University of Zielona Góra, Poland. His major research areas include measurement optimization for spatio-temporal systems, optimum experimental design for dynamic systems, algorithmic optimal control, probabilistic robotics and parallel computing. He is the author of Optimal Measurement Methods for Distributed Parameter System Identification. Anthony C. Atkinson is an Emeritus Professor of Statistics at the London School of Economics. He has published extensively on robust statistical methods, generalized linear models, clinical trials, optimum experimental design, simulation and regression diagnostics. He has served as Editor of the Journal of the Royal Statistical Society, Series B. He is the author of Plots, Transformations, and Regression and co-author of Optimum Experimental Designs, Robust Diagnostic Regression Analysis and Exploring Multivariate Data with the Forward Search. Maciej Patan is a Reader in Electrical Engineering at the University of Zielona Góra, Poland. His research focuses on sensor scheduling for the optimal observation of spatio-temporal systems, optimum experimental design, clinical trials, scientific computing and mobile robotics. He is the author of Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems.

Dariusz Uciński is a Professor of Automatic Control and Robotics at the University of Zielona Góra, Poland. His major research areas include measurement optimization for spatio-temporal systems, optimum experimental design for dynamic systems, algorithmic optimal control, probabilistic robotics and parallel computing. He is the author of Optimal Measurement Methods for Distributed Parameter System Identification. Anthony C. Atkinson is an Emeritus Professor of Statistics at the London School of Economics. He has published extensively on robust statistical methods, generalized linear models, clinical trials, optimum experimental design, simulation and regression diagnostics. He has served as Editor of the Journal of the Royal Statistical Society, Series B. He is the author of Plots, Transformations, and Regression and co-author of Optimum Experimental Designs, Robust Diagnostic Regression Analysis and Exploring Multivariate Data with the Forward Search. Maciej Patan is a Reader in Electrical Engineering at the University of Zielona Góra, Poland. His research focuses on sensor scheduling for the optimal observation of spatio-temporal systems, optimum experimental design, clinical trials, scientific computing and mobile robotics. He is the author of Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems.

A Convergent Algorithm for Finding KL-Optimum Designs and Related Properties.- Robust Experimental Design for Choosing Between Models of Enzyme Inhibition.- Checking Linear Regression Models Taking Time into Account.- Optimal Sample Proportion for a Two-Treatment Clinical Trial in the Presence of Surrogate Endpoints.- Estimating and Quantifying Uncertainties on Level Sets Using the Vorobev Expectation and Deviation with Gaussian Process Models.- Optimal Designs for Multiple-Mixture by Process Variable Experiments.- Optimal Design of Experiments for Delayed Responses in Clinical Trials.- Construction of Minimax Designs for the Trinomial Spike Model in Contingent Valuation Experiments.- Maximum Entropy Design in High Dimensions by Composite Likelihood Modelling.- Randomization Based Inference for the Drop-The-Loser Rule.- Adaptive Bayesian Design with Penalty Based on Toxicity-Efficacy Response.- Randomly Reinforced Urn Designs Whose Allocation Proportions Converge to Arbitrary Prespecified Values.- Kernels and Designs for Modelling Invariant Functions: From Group Invariance to Additivity.- Optimal Design for Count Data with Binary Predictors in Item Response Theory.- Differences between Analytic and Algorithmic Choice Designs for Pairs of Partial Profiles.- Approximate Bayesian Computation Design (ABCD), An Introduction.- Approximation of the Fisher Information Matrix for Nonlinear Mixed Effects Models in Population Pk/Pd Studies.- c-Optimal Designs for the Bivariate Emax Model.- On the Functional Approach to Locally D-Optimum Design for Multiresponse Models.- Sample Size Calculation for Diagnostic Tests in Generalized Linear Mixed Models.- D-Optimal Designs for Lifetime Experiments with Exponential Distribution and Censoring.- Convergence of An Algorithm for Constructing Minimax Designs.- Extended Optimality Criteria for Optimum Design in Nonlinear Regression.- Optimal Design for Multivariate Models with Correlated Observations.- Optimal Designs for the Prediction of Individual Effects in Random Coefficient Regression.- D-Optimum Input Signals for Systems with Spatio-Temporal Dynamics.- Random Projections in Model Selection and Related Experimental Design Problems.- Optimal Design for the Bounded Log-Linear Regression Model.

Erscheint lt. Verlag 21.3.2013
Reihe/Serie Contributions to Statistics
Contributions to Statistics
Zusatzinfo XX, 249 p. 43 illus., 13 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Technik
Schlagworte Clinical Trials • Mixed-Effects Models • Nonlinear models
ISBN-10 3-319-00218-X / 331900218X
ISBN-13 978-3-319-00218-7 / 9783319002187
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich