Statistical Modelling of Molecular Descriptors in QSAR/QSPR (eBook)
XX, 436 Seiten
Wiley-VCH (Verlag)
978-3-527-64502-2 (ISBN)
The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.
Matthias Dehmer studied mathematics at the University of Siegen (Germany) and received his Ph.D. in computer science from the Technical University of Darmstadt (Germany). Afterwards, he was a research fellow at Vienna Bio Center (Austria) and at Vienna University of Technology. Currently, he is an Associate Professor at UMIT - The Health and Life Sciences University (Austria). His research interests are in bioinformatics, chemical graph theory, systems biology, complex networks, statistics and information theory. In particular, he is also working on machine learning-based methods to design new data analysis methods for solving problems in computational biology and medicinal chemistry. Kurt Varmuza studied chemistry at the Vienna University of Technology (Austria). His research activities were first mass spectrometry and then moved to chemometrics - mainly the application of multivariate statistical analysis for chemistry related problems, such as spectra-structure relationships and structureproperty relationships. Since 1992, he has been working as a professor at the Vienna University of Technology, currently at the Institute of Chemical Engineering. Danail Bonchev received his Ph. D. in quantum chemistry in Sofia, Bulgaria and D. Sc. in mathematical chemistry from the Moscow State University in Russia. He worked till 1992 as a professor of physical chemistry in the Assen Zlatarov University in Bourgas, Bulgaria. In 1992 he joined Texas A&M University at Galveston, and since 2003 he is professor at Virginia Commonwealth University in Richmond. His research includes quantum chemistry, molecular topology, QSPR and QSAR and, recently, bioinformatics and computational biology.
Current Modeling Methods used in QSAR/QSPR (Liew Chin Yee and Yap Chun Wei)
Developing Best Practices for Descriptor-Based Property Prediction: Appropriate Matching of Datasets, Descriptors, Methods, and Expectations (Michael Krein, Tao-wei Huang, Lisa Morkowchuk, Dimitris K. Agrafiotis, and Curt M. Breneman)
Mold Molecular Descriptors for QSAR (Huixiao Hong, Svetoslav Slavov, Weigong Ge, Feng Qian, Zhenqiang Su, Hong Fang, Yiyu Cheng, Roger Perkins, Leming Shi and Weida Tong)
Multivariate Analysis of Molecular Descriptors (Viviana Consonni and Roberto Todeschini)
Partial Order Ranking and Linear Modeling: Their Use in Predictive QSAR/QSPR Studies (Andrew G. Mercader, Eduardo A. Castro)
Graph-theoretical Descriptors for Branched Polymers (Koh-hei Nitta)
Structural Similarity based Approaches for the Development of Clustering and QSPR/QSAR Models in Chemical Databases (Irene Luque Ruiz, Gonzalo Cerruela García and Miguel Ángel Gómez-Nieto)
Statistical Methods for Predicting Compound Recovery Rates for Ligand-based Virtual Screening and Assessing the Probability of Activity (Martin Vogt and Jürgen Bajorath)
Molecular Descriptors and the Electronic Structure (Horst Bögel)
New types of Descriptors and Models in QSAR/QSPR (Christian Kramer and Timothy Clark)
Consensus Models of Activity Landscapes (José L. Medina-Franco, Austin B. Yongye and Fabian López-Vallejo)
Reverse Engineering Chemical Reaction Networks from Time Series Data (Dominic P. Searson, Mark J. Willis and Allen Wright)
Reduction of Dimensionality, Order and Classification in Spaces of Theoretical Descriptions of Molecules. An Approach based on Metrics, Pattern Recognition Techniques and Graph Theoretic Considerations (George Maroulis)
The Analysis of Organic Reaction Pathways by Brownian Processing (Daniel J. Graham)
Generation of Chemical Transformations - Reaction Pathways Prediction and Synthesis Design (Grazyna Nowak and Grzegorz Fic)
Erscheint lt. Verlag | 6.2.2012 |
---|---|
Reihe/Serie | Quantitative and Network Biology | Quantitative and Network Biology |
Mitarbeit |
Herausgeber (Serie): Matthias Dehmer, Frank Emmert-Streib |
Sprache | englisch |
Themenwelt | Studium ► Querschnittsbereiche ► Infektiologie / Immunologie |
Naturwissenschaften ► Biologie | |
Schlagworte | Bioinformatics & Computational Biology • Bioinformatik • Bioinformatik u. Computersimulationen in der Biowissenschaften • Biostatistics • Biostatistik • Biowissenschaften • Chemie • Chemistry • Life Sciences • Molecular Pharmacology • Molekulare Pharmakologie • Pharmakologie • Statistics • Statistik |
ISBN-10 | 3-527-64502-0 / 3527645020 |
ISBN-13 | 978-3-527-64502-2 / 9783527645022 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich