International Review of Cytology (eBook)
265 Seiten
Elsevier Science (Verlag)
978-0-08-048919-3 (ISBN)
International Review of Cytology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. - Authored by some of the foremost scientists in the field- Provides up-to-date information and directions for future research- Valuable reference material for advanced undergraduates, graduate students and professional scientists
Front Cover 1
International Review of Cytology: A Survey of Cell Biology 4
Copyright Page 5
Contents 6
Contributors 8
Chapter 1. Involvement of Homeobox Genes in Early Body Plan of Monocot 10
I. Introduction 10
II. Plant Homeobox Genes 11
III. SAM Formation and knox Gene Expression during Early Embryogenesis in Monocots 22
IV. SAM Maintenance and knox Genes after SAM Formation 34
V. Concluding Remarks 37
References 37
Chapter 2. Telomeres in Mammalian Male Germline Cells 46
I. Introduction 46
II. Telomeres in Somatic and Germline Cells 47
III. Telomere Proteins and Chromatin Structure 62
IV. Concluding Remarks 69
References 71
Chapter 3. Evolutionary Aspects of Cellular Communication in the Vertebrate Hypothalamo–Hypophysio–Gonadal Axis 78
I. Introduction 78
II. Functional Morphology of Hypothalamal–Hypophysial–Gonadal Axis 79
III. Requirement of Local Control Mechanisms in Gonads 98
IV. Local Factors and Proto-Oncogene Activation in Gonads 102
V. Communication via GnRH: An Evolutionary Track 119
VI. Concluding Remarks 125
References 126
Chapter 4. Non-coding Ribonucleic Acids—A Class of Their Own? 152
I. Introduction 152
II. Non-coding RNAs in Microorganisms, Plants, and Invertebrates 153
III. Non-coding RNAs in Vertebrates 169
IV. Conclusions 210
References 212
Chapter 5. Three-Dimensional Progression of Programmed Death in the Rice Coleoptile 230
I. Introduction 230
II. The Coleoptile of Rice Plants 234
III. Cell Death 237
IV. Cell Death Progression in the Coleoptile 255
V. Concluding Remarks 260
References 262
Index 268
Involvement of Homeobox Genes in Early Body Plan of Monocot
Momoyo Ito; Yutaka Sato; Makoto Matsuoka BioScience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
Abstract
Homeobox genes are known as transcriptional regulators that are involved in various aspects of developmental processes in many organisms. In plants, many types of homeobox genes have been identified, and mutational or expression pattern analyses of these genes have indicated the involvement of several classes of homeobox genes in developmental processes. The fundamental body plan of plants is established during embryogenesis, whereas morphogenetic events in the shoot apical meristem (SAM) continue after embryogenesis. Knotted1-like homeobox genes (knox genes) are preferentially expressed in both the SAM and the immature embryo. Therefore, these genes are considered to be key regulators of plant morphogenesis. In this review, we discuss the regulatory role of knox genes and other types of homeobox genes in SAM establishment during embryogenesis and SAM maintenance after embryogenesis, mainly in rice.
KEY WORDS
Embryogenesis
Homeobox
knox
monocot
Rice
Shoot apical meristem
I Introduction
The homeobox, which is characterized by conserved DNA sequence of 180 bp, encodes a 60-amino acid protein motif known as the homeodomain (HD). This structure consists of a helix-turn-helix DNA-binding motif, and thus the homeobox genes are thought to function as transcription factors (Gehring et al., 1994a,b; Gehring, 1987; Qian et al., 1989). Homeobox genes were originally identified in Drosophila homeotic mutants, Antennapedia and bithorax, as the genes that control patterning in Drosophila development (McGinnis et al., 1984; Scott and Weiner, 1984). Since then, homeobox genes have been identified in many evolutionarily distant organisms, including animals, plants, and fungi. In higher plants, many homeobox genes have been found to play important roles in various developmental events, as is the case in animals (Chan et al., 1998).
Angiosperms are subdivided into two classes: dicotyledonous (dicot) and monocotyledonous (monocot) plants. Arabidopsis is commonly used as a model plant of dicots, and maize and rice are used as model plants of monocots. Many molecular and genetic studies using these model plants have revealed the existence of mutually orthologous genes in the dicot and monocot genomes, and they are thought to share essentially common mechanisms for each phenomenon, including various developmental events. On the other hand, there are also many morphological differences between monocots and dicots, and these should be reflected in some differences in the developmental mechanisms. In this review, we first describe the general characteristics of plant homeobox genes and the involvement of homeobox (mainly knox) genes in early development of monocots. Particular attention is then given to the morphological differences in embryogenesis between monocots and dicots.
II Plant Homeobox Genes
A Characteristics of the Plant Homeobox Gene Family
The first homeobox gene to be identified in plants was KNOTTED1 (KN1) from the maize Knotted1 (Kn1) mutant (Vollbrecht et al., 1991). Leaf blades of the Kn1 mutant exhibit abnormal arrangements of the lateral veins, sporadic outgrowths called knots, and ligule displacements. Kn1 is a dominant mutant, caused by ectopic expression of KN1 in leaves, that results in the disorganization of the developmental program of leaf blades (Table I) (Smith and Hake, 1994). Subsequent to the cloning of the KN1 gene from maize, many plant homeobox genes have been isolated from various plant species using library screening with previously identified gene or degenerate oligonucleotides deduced from HDs as probes (Ruberti et al., 1991; Mattsson et al., 1992; Schena and Davis, 1992, 1994; Carabelli et al., 1993; Gonzalez and Chan, 1993; Matsuoka et al., 1993; Boivin et al., 1994; Chan and Gonzalez, 1994; Feng and Kung, 1994; Kerstetter et al., 1994; Lincoln et al., 1994; Ma et al., 1994; Soderman et al., 1994; Baima et al., 1995; Dockx et al., 1995; Kawahara et al., 1995; Meissner and Theres, 1995; Tamaoki et al., 1995, 1997; Di Cristina et al., 1996; Granger et al., 1996; Hareven et al., 1996; Lu et al., 1996; Serikawa et al., 1996; Gonzalez et al., 1997; Meijer et al., 1997; Valle et al., 1997; Watillon et al., 1997; Janssen et al., 1998; Sato et al., 1998; Sentoku et al., 1998, 1999; Nishimura et al., 1999; Ingram et al., 2000), differential screening (Nadeau et al., 1996; Tornero et al., 1996; Ingram et al., 1999; Dong et al., 2000), mutant based cloning (Table I) (Rerie et al., 1994; Müller et al., 1995; Reiser et al., 1995; Schneeberger et al., 1995; Long et al., 1996; Chen et al., 1997; Muehlbauer et al., 1997;Parnis et al., 1997; Mayer et al., 1998; Kubo et al., 1999), and other methods (Bellmann and Werr, 1992; Schindler et al., 1993; Korfhage et al., 1994; Klinge et al., 1996). On the basis of sequence similarities in their HDs and the presence of additional distinctive domains outside of the HD, plant homeobox genes are subdivided into several families: knox, HD-ZIP, glabra2, PHD-finger, BELL1, and WUSCHEL-type (Chan et al., 1998). The characteristic structure and functions of each of these plant homeobox gene families are described below (Fig. 1).
Table I
List of Homeobox Mutants and Their Phenotypes in Plants
Kn1 (Knottedl) | Maize | Dominant | Knots on leaves, blade-sheath boundary displacement | knox | Freeling and Hake, 1985 Vollbrecht et al., 1991 |
Kn1 | Maize | Recessive | Arrested shoot development, reduced tassel branches, fewer spiklets | knox | Kerstetter et al., 1997 Vollbrecht et al., 2000 |
Rs1 (Roughsheath1) | Maize | Dominant | Dwarf plants, sheath mesophyll overgrowth, blade-sheath boundary displacement | knox | Becraft and Freeling, 1994 Schneeberger et al., 1995 |
Gn1 (Gnarleyl/knox4) | Maize | Dominant | Shortened internode (dwarf plants), sheath mesophyll overgrowth, blade-sheath boundary displacement | knox | Foster et al., 1999a Foster et al., 1999b |
Lg4 (Liguleless4/knox5,11) | Maize | Dominant | Blade into sheath transformation | knox | Fowler and Freeling, 1996 |
Lg3 (Liguleless3) | Maize | Dominant | Blade into sheath transformation | knox | Fowler and Freeling, 1996 Fowler et al., 1996 Muehlbauer et al., 1997 |
d6 (OSH15) | Rice | Recessive | Shortened intemode (dwarf plants), cell identity defects | knox | Sato et al., 1999 |
Hooded | Barley | Dominant | Extra flower on the lemma | knox | Müller et al., 1995 |
stm (shootmeristemless) | Arabidopsis | Recessive | Arrested shoot development, abnormal floral organ number | knox | Barton and Poethig, 1993 Long et al., 1996 |
Tkn2/Let6 | Tomato | Dominant | Supercompound leaves, ectopic shoots | knox | Chen et al., 1997 Janssen et al., 1998 Parnis et al., 1997 |
ifl1 (interfascicular fiberless1) | Arabidopsis | Recessive | Disruptted interfascicular fiber differentiation | HD-ZIP | Zhong et... |
Erscheint lt. Verlag | 14.8.2002 |
---|---|
Sprache | englisch |
Themenwelt | Studium ► 1. Studienabschnitt (Vorklinik) ► Histologie / Embryologie |
Naturwissenschaften ► Biologie ► Biochemie | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Naturwissenschaften ► Biologie ► Zellbiologie | |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Technik | |
ISBN-10 | 0-08-048919-2 / 0080489192 |
ISBN-13 | 978-0-08-048919-3 / 9780080489193 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich