Nicht aus der Schweiz? Besuchen Sie lehmanns.de

BioNanoFluidic MEMS (eBook)

Peter J. Hesketh (Herausgeber)

eBook Download: PDF
2007 | 2008
X, 295 Seiten
Springer US (Verlag)
978-0-387-46283-7 (ISBN)

Lese- und Medienproben

BioNanoFluidic MEMS -
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explains biosensor development fundamentals. It also initiates awareness in engineers and scientists who would like to develop and implement novel biosensors for agriculture, biomedicine, homeland security, environmental needs, and disease identification. In addition, the book introduces and lays the basic foundation for design, fabrication, testing, and implementation of next generation biosensors through hands-on learning.


BioNanoFluidic MEMS explains biosensor development fundamentals and initiates an awareness in engineers and scientists who would like to develop and implement novel biosensors for agriculture, biomedicine, home land security, environmental needs, and disease identification. In addition, the material covered in this book introduces and lays the basic foundation for design, fabrication, testing, and implemention of next generation biosensors through hands-on learning.

Preface 6
Contents 8
Contributors 10
Nanotechnology: Retrospect and Prospect 12
1.1 Introduction 13
1.2 In Retrospect 13
1.3 In Prospect 15
1.4 Conclusion 18
References 19
Synthesis of Oxide Nanostructures 21
Abbreviation 21
2.1 Introduction 21
2.2 Synthesis Methods 2.2.1 VS Growth 22
2.2.2 VLS Growth 23
2.2.3 Hydrothermal Synthesis 24
2.2.4 Composite-Hydroxide-Mediated Technique 31
2.3 Hydroxides Mediated Synthesis of Complex Oxides 34
2.3.1 Perovskites 34
2.3.2 Spinel 37
2.3.3 Hydroxide 39
2.3.4 Sulphides 39
2.3.5 Other Kinds of Nanomaterials 41
2.4 Discussion 42
2.5 Summary 44
References 45
Nanolithography 47
Abbreviations 47
3.1 Introduction 47
3.2 Pattern Preparation 50
3.3 Electron Beam Lithography System Design 50
3.3.1 Electron Optics 52
3.3.2 Stage Control 54
3.3.3 Beam Scanning 54
3.3.4 Beam Shapes 54
3.4 Electron Beam Resists 54
3.5 Electron–Substrate Interaction and Proximity Effect 57
3.5.1 Critical Dimension Control 61
3.6 Device Fabrication Examples 63
3.7 E-beam Lithography Limits 65
3.8 Other Lithography Techniques 3.8.1 Ion Beam Lithography 68
3.8.2 X-ray Lithography 68
3.8.3 Electron Projection Lithography 69
3.8.4 Dip Pen Nanolithography 69
3.8.5 Laser Direct Write 70
3.9 Further Reading 70
References 70
Nano/Microfabrication Methods for Sensors and NEMS/ MEMS 73
4.1 Introduction 73
4.2 Physical Vapor Deposition 74
4.2.1 Vapor Pressure and Deposition Rate 75
4.2.2 Ultrathin Film Growth 78
4.2.3 Example 1: Impedance-Based Immunobiosensor 82
4.3 Atomic Layer Deposition 4.3.1 Introduction 83
4.3.2 Semiconductors 88
4.3.3 Dielectric Films 88
4.3.4 Other Metal Oxide and Nitride Films 95
4.3.5 Metals 97
4.3.6 MEMS Applications of ALD 99
4.3.7 Integration with Porous Membranes and Templates 102
4.4 Focused Ion Beam Processing 4.4.1 Introduction 105
4.4.2 Applications of FIB 109
4.4.3 FIB CVD 114
4.5 Electroplating of Nanostructures 120
4.5.1 Electrochemical Cells for Electroplating 120
4.5.2 Templates 122
4.5.3 Ferromagnetic Nanowire Materials 124
4.5.4 Noble Metal Nanowires 127
4.5.5 Metal Oxide Nanowires 129
4.6 The Future 131
References 132
List of Symbols and Abbreviations 139
Micro- and Nanomanufacturing via Molding 141
5.1 Introduction 141
5.2 Review of Molding Processes 142
5.3 Applications of Micro- and Nanomolding 143
5.3.1 Functional Micro- and Nanomolded Applications 144
5.3.2 Lithographic Patterning via Micro- and Nanomolding 145
5.4 Polymer Flow During Molding 146
5.4.1 Local Cavity Flow 147
5.4.2 Nonuniform Long Range Polymer Transport 152
5.5 Design Rules for New Molding Processes 153
5.6 Summary 157
References 157
Abbreviations 161
Temperature Measurement of Microdevices using Thermoreflectance and Raman Thermometry 162
6.1 Introduction 162
6.2 Temperature Measurement of Microdevices by Means of Thermoreflectance 6.2.1 Physical Basis of the Thermoreflectance Technique 164
6.2.2 Experimental Methodology 166
6.2.3 Calibration of the Thermoreflectance Coefficient 167
6.2.4 Applications of Thermoreflectance in Temperature Measurement of Microdevices 168
6.3 Temperature Measurement of Microdevices by Means of Raman Spectroscopy 6.3.1 Physical Basis of the Raman Technique 170
6.3.2 Stokes/Anti-Stokes Intensity Ratio as a Measurement of Temperature 174
6.3.3 Stokes Shift as a Measurement of Temperature 174
6.3.4 Stokes Linewidth as a Measurement of Temperature 175
6.3.5 Calibration and Experimental Procedure 176
6.3.6 Applications of Raman Spectroscopy in Temperature Measurement of Microdevices 178
6.4 Summary and Conclusions 181
References 181
Stereolithography and Rapid Prototyping 184
7.1 Rapid Prototyping 184
7.2 Stereolithography 7.2.1 Technology Description 185
7.2.2 Materials 187
7.2.3 Modeling 190
7.3 Micro-Fluidics and Micro-Sensor Examples 192
7.3.1 Experiments 192
7.3.2 Results 195
7.4 Micro-Stereolithography 7.4.1 Introduction 197
7.4.2 Compensation Zone Modeling 199
7.4.3 Examples 201
7.5 PDMS Molding with SL Molds 201
7.5.1 Fluid Flow Manifold for a Microvalve 202
7.5.2 Bioassay on a Chip 203
References 203
Symbols and Abbreviations 205
Case Studies in Chemical Sensor Development 206
8.1 Introduction 206
8.2 Case Studies 8.2.1 Sensors and Supporting Hardware Need to be Tailored for the Application: Case Study of Silicon Based Hydrogen Sensor Development 207
8.2.2 Sensor Structure Determines the Technical Challenges Part 1, Importance of Surface Interface Control: Case Study of SiC Based Hydrogen and Hydrocarbon Sensors 216
8.2.3 Sensor Structure Determines Technical Challenges Part 2, Microfabrication is Not Just Making Something Smaller: Case Study of Carbon Dioxide Sensor Development 222
8.2.4 One Sensor or Even One Type of Sensor Often will Not Solve the Problem, The Need for Sensor Arrays: Case Study of Multifunctional Fire Detection Sensor Array 227
8.2.5 Supporting Technologies Often Determine Success in a Sensor Application: Case Study of Smart Leak Detection Sensor Array 231
8.3 Summary and Sensor Technology Application Approaches 234
References 237
Glossary 240
Engineered Nanopores 241
9.1 Nanopores in Biology and Technology 241
9.2 Nanopores from Soft Matter 242
9.3 Solid-State Nanopore Devices 245
9.4 Nanopore Simulation and Control Techniques 249
9.5 Prospects and Challenges in END Science and Technology 253
References 255
Engineering Biomaterial Interfaces Through Micro and Nano- Patterning 259
10.1 Introduction 259
10.2 Techniques for Surface Patterning Cell Substrates 260
10.2.1 Topographical Patterning Methods 261
10.2.2 Molding Techniques 263
10.2.3 Chemical Patterning Methods 265
10.2.4 Traditional Cleanroom Techniques 265
10.2.5 Non-traditional Techniques 266
10.2.6 Combined Topographical and Chemical Patterning 270
10.3 Cellular Response to Surface Patterns 10.3.1 Cellular Response to Topography 271
10.3.2 Cellular Response to Chemical Patterns 274
10.3.3 Cellular Response to Combined Chemistry and Topography 277
10.4 Summary and Conclusions 279
References 280
Biosensors Micro and Nano Integration 286
11.1 Introduction 286
11.2 Micro and Nanocomposite Bio Compatible Interconnect 287
11.2.1 Flip Chip Process 287
11.2.2 MEMS Packaging 291
11.2.3 Material Trends in MEMS Packaging 291
11.2.4 Challenge in Integration Technologies 291
11.3 Temperature Dependents of Integration for Bio- MEMS Process 292
11.4 Flip Chip Stud Bump Assembly 294
11.4.1 Pressure Bonding Technique 294
11.5 Next Generation Nano Composite Interconnect Technique for Bio MEMS Systems 295
11.6 Examples Bio-Medical Packaging Applications 295
References 296

Erscheint lt. Verlag 15.11.2007
Reihe/Serie MEMS Reference Shelf
MEMS Reference Shelf
Zusatzinfo X, 295 p. 100 illus.
Verlagsort New York
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Biomaterial • BioNanoFluidic • Biosensor • Hesketh • Material • MEMS • nanostructure • nanotechnology • Temperature • Testing
ISBN-10 0-387-46283-X / 038746283X
ISBN-13 978-0-387-46283-7 / 9780387462837
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich