Nanotechnology Enabled In situ Sensors for Monitoring Health (eBook)
XV, 162 Seiten
Springer New York (Verlag)
978-1-4419-7291-0 (ISBN)
Nanotechnologies are now being applied to health monitoring. Until recently, there has been little research into how to use nanotechnology and sensors in health monitoring. Nanotechnology Enabled In Situ Sensors for Monitoring Health summarizes the research efforts to design sensors based on nanotechnology that can be placed into the body to monitor health. Nanotechnology is being used at an unprecedented pace to both diagnose and treat diseases, rather than conventional approaches that diagnose and treat diseases in a different manner.
Nanotechnology Enabled In situ Sensors for Monitoring Health 3
Foreword 7
Preface 11
Contents 13
Contributors 15
Chapter 1: Nanotechnologies for Cancer Sensing and Treatment 17
1 Introduction 18
2 Growth and Other Characteristics of Tumors 20
2.1 Introduction to Tumors 20
2.2 Vascularization Process in Tumors (Angiogenesis) 21
2.3 Characteristics of Tumor Vascular Structures 21
3 Tumor Targeting Methods 22
3.1 Passive Targeting 22
3.2 Active Targeting 23
4 Liposome Nanoparticles 25
4.1 Liposomes and their Advantages in Drug Delivery 25
4.2 Passive Targeting Liposomes with PEG Coatings 26
4.3 Active Targeting with Liposomes 27
4.4 Disadvantages of Liposomes 28
5 Quantum Dots 28
5.1 Properties of Quantum Dots 28
5.2 Quantum Dots in Cancer Imaging and Treatment 30
5.2.1 Active and Passive Targeting for QDs 30
5.2.2 QDs in Drug Delivery and Therapy for Cancers 31
5.3 Disadvantages of QDs 32
6 Nanoshells 33
6.1 Structure of Nanoshells 33
6.2 Optical Properties of Gold Nanoshells 35
6.3 Nanoshells in Cancer Diagnostics and Treatment 35
6.4 Disadvantages of Nanoshells 36
7 Superparamagnetic Nanoparticles (SPMNPs) 36
7.1 SPMNPs Used as Magnetic Contrast Agents in MRI 37
7.2 SPMNPs in Hyperthermia Treatment for Cancer 38
7.3 Magnetic Targeting of SPMNP: Drug Conjugates 40
7.4 Disadvantages of SPMNPs 41
8 Polymeric Nanoparticles 41
8.1 Polymeric Nanoparticle Preparation Methods 41
8.1.1 Emulsification Solvent Evaporation Method 41
8.1.2 Emulsification-Diffusion Method 42
8.1.3 Nanoprecipitation Method 42
8.1.4 Salting-out Process 42
8.2 Control the Properties of Polymeric Nanoparticles 43
8.3 Drug-Loading Methods 45
8.4 Drug Release Characteristics and Drug Biodistribution Profiles 45
8.5 Disadvantages of Polymeric Nanoparticles 46
9 Cancer Biosensors 46
10 Conclusions 48
References 49
Chapter 2: Monitoring Tissue Healing Through Nanosensors 56
1 Introduction 56
2 Wireless Medical Monitor Advantages and Disadvantages: The Concept 57
3 Implantable Wireless Medical Devices 60
3.1 Treating Bone Defects 60
3.2 Fundamentals of the Interface Between Sensors and Bone 62
3.2.1 Events at the Sensor–Bone Tissue Interface 62
3.2.2 Novel Properties of Nanomaterials/Nanotechnology 63
3.3 The Role of Sensor Surface Chemistry, Topography, and Energetics on Promoting Cell Recognition and Function 63
3.3.1 Surface Chemistry 64
3.3.2 Topography and Roughness 65
3.3.3 Wettability and Surfaces Energetics 66
3.4 Novel Sensor Surfaces: Better Biological Responses and Better Performance 67
4 Summary and Remaining Challenges for Wireless Monitoring and Sensing Medical Devices 70
References 71
Chapter 3: Monitoring Inflammation and Infection via Implanted Nanosensors 75
1 Inflammation 75
1.1 Introduction 75
1.2 Host Response to Foreign Materials 76
2 Infection 77
2.1 Introduction 77
2.2 The Biofilm 78
2.3 Current Methods of Preventing and Treating Catheter and Endotracheal Tube Infections 79
3 Examples of Biosensors Used for Infection and Inflammation 81
3.1 Ex Vivo 81
3.2 In Situ 81
4 Conclusions 85
References 85
Chapter 4: DNA-Based Nanotechnology Biosensors for Surgical Diagnosis 88
1 Introduction and Background 88
2 Natural DNA for Biosensors 92
2.1 Synthesis of DNA 92
2.2 Immobilization of DNA 94
2.2.1 DNA Immobilization by Adsorption 94
2.2.2 DNA Immobilization by Protein Complexation 95
2.2.3 DNA Immobilization by Covalent Bonds 97
3 DNA-Derived Materials for Biosensors 98
4 Future Prospects and Conclusions 103
References 104
Chapter 5: Electrically Active Neural Biomaterials 108
1 Introduction: Nervous System Injury 109
1.1 Statistics 109
1.2 Central Nervous System Injury 109
1.3 Peripheral Nervous System Injury 111
2 Nerve Repair Strategies 111
2.1 Repair Strategies in the PNS 112
2.2 Repair Strategies in the CNS 114
3 Metrics of Regeneration 114
3.1 Neural Cells 114
3.2 Glial Cells 115
3.3 Protein Assays 116
3.4 In Vivo Assays 116
4 Next Generation Biomaterials for Nerve Regeneration 117
4.1 Mechanisms of Protein/Nanomaterial Interactions 118
4.2 Neural and Glial Cell Interactions with Nanomaterials 119
5 Other Nerve Regeneration Stimuli 121
5.1 Electrical Stimulation 121
5.2 Conductive and Piezoelectric Materials 121
5.3 Piezoelectric Nanomaterials 122
6 Conclusions and Future Directions 124
References 125
Chapter 6: Biodegradable Metals and Responsive Biosensors for Musculoskeletal Applications 128
1 Introduction 128
2 Musculoskeletal System 129
2.1 Properties and Functions of Bone 130
2.2 Properties and Functions of Ligaments 131
2.3 Need for Novel Biomaterials and Devices 133
3 Biodegradable Metals: Magnesium and Magnesium Alloys 135
3.1 Magnesium in the Body 135
3.2 Potential of Using Mg Alloys in Medical Implants 136
3.3 Challenges in the Development of Mg Alloys for Biomedical Applications 139
3.4 Surface Treatment on Mg Alloys for Controlling Biofunctionality and Biodegradation 139
3.4.1 Bioresorbable Ceramic Coatings on Mg Alloys 140
3.4.2 Polymer Coating and Surface Modification 141
4 Biosensors for Musculoskeletal Applications 141
4.1 Responsive Biosensors 141
4.2 Bone Marker Biosensors 142
4.3 Ion-Selective Biosensors 143
5 Summary and Future Directions 143
References 143
Chapter 7: Carbon Nanotube-Based Orthopedic Implant Sensors 151
1 Introduction 152
2 Making Orthopedic Implant Sensors 154
2.1 Step 1: Preparation of Nanotubular Anodized Titanium 154
2.2 Step 2: Cobalt-Catalyzed Chemical Vapor Deposition for Growing MWCNTs 155
3 Biological Responses to Orthopedic Implant Sensors 156
4 Sensing Ability of Orthopedic Implant Sensors 157
5 Discussion 164
6 Conclusions 169
References 170
Index 173
Erscheint lt. Verlag | 17.12.2010 |
---|---|
Zusatzinfo | XV, 162 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Pflege |
Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Technik ► Medizintechnik | |
Schlagworte | Biodetection • biomedical engineering • biomedicine • biosensors • Brain nanotechnology • Derived self-adapting sensors • In situ sensors • Medical nanotechnology • nanosensors • Neurological sensors • Orthopedic implant sensors • Thomas J. Webster |
ISBN-10 | 1-4419-7291-9 / 1441972919 |
ISBN-13 | 978-1-4419-7291-0 / 9781441972910 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich