Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Minimizing Incisions and Maximizing Outcomes in Cataract Surgery (eBook)

eBook Download: PDF
2010 | 2010
XV, 319 Seiten
Springer Berlin (Verlag)
978-3-642-02862-5 (ISBN)

Lese- und Medienproben

Minimizing Incisions and Maximizing Outcomes in Cataract Surgery -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Many ophthalmologists are in the transition from the traditional cataract surgery technique to the new minimally incision cataract surgery (MICS) technique. They are in the need of updated information on how to make this transition smoothly. In this book, world-renowned opinion leaders present up-to-date information on the new and fast-developing trends in cataract surgery. It reflects the state of the art of microincisional cataract surgery with the concept of minimizing incision. It offers all necessary information on the new technology as well as on the surgical technique. Further, it demonstrates how to handle difficult cataract cases as well as new intraocular lenses.

Preface 6
Contents 8
Contributors 11
Chapter 1 14
Introduction 14
Literature Review 14
Major Issues 14
Major Studies 14
Negative Studies 16
References 16
Chapter 2 18
The Transition Towards Smaller and Smaller Incisions 18
1.1 Micro-Coaxial Phacoemulsifi cation with Torsional Ultrasound 18
1.1.1 Introduction 18
1.1.2 Micro-Coaxial Phacoemulsification 18
1.1.3 Torsional Ultrasound 19
1.1.4 Our Procedure for Emulsifying the Nucleus 21
1.1.5 Combining Micro-Coaxial Phacoemulsification with Torsional Ultrasound 22
References 23
Chapter 3 24
1.2 Transitioning to Bimanual MICS 24
1.2.1 Introduction 24
1.2.2 Technique 25
1.2.3 Summary 26
Chapter 4 27
1.3 0.7 mm Microincision Cataract Surgery 27
1.3.1 Sub 1 mm MICS: Why? 27
1.3.2 Potential Drawbacks of a Sub-1 m Incision 28
1.3.3 Instrumentation 30
1.3.3.1 Phaco Tip (0.7 mm) 30
1.3.3.2 0.7 mm Irrigating Instruments 31
1.3.4 Surgery 32
1.3.4.1 Incision 32
1.3.4.2 Capsulorhexis 32
1.3.4.3 Hydrodissection 32
1.3.4.4 Prechopping 32
1.3.4.5 Phacoemulsification 33
1.3.5 0.7 mm MICS Combined Procedures 34
1.3.5.1 0.7 mm MICS and Glaucoma Surgery 34
1.3.5.2 0.7 mm MICS and 25-GaugeTransconjunctival SuturelessVitrectomy 35
1.3.6 Summary 36
References 36
Chapter 5 38
MICS Instrumentation 38
2.1 MICS Instrument Choice: The First Step in the Transition 38
2.2 MICS Incision 40
2.3 MICS Capsulorhexis 41
2.4 MICS Prechopping 43
2.5 MICS Irrigation/Aspiration Instruments 44
2.5.1 19 G Instruments 44
2.5.2 21 G Instruments 46
2.6 MICS Auxiliary Instrument 47
2.6.1 Scissors 47
2.6.2 Gas Forced Infusion 47
2.6.3 Surge Prevention 48
2.7 New MICS Instruments 48
2.7.1 Flat Instruments 48
References 49
Chapter 6 50
Evolution of Ultrasound Pumps and Fluidics and Ultrasound Power: From Standard Coaxial Towards the Minimal Incision Possible in Cataract Surgery 50
3.1 Introduction 50
3.2 Power Generation 50
3.3.1 Tuning 50
3.2.2 Phaco Energy 51
3.2.2.1 Low Frequency Energy 51
3.2.2.2 High Frequency Energy 51
3.2.3 Transient Cavitation 51
3.2.4 Sustained Cavitation 52
3.3 Modifi cation of Phaco Power 53
3.3.1 Alteration of Stroke Length 53
3.3.2 Alteration of Duration 53
3.3.2.1 Burst Mode 53
3.3.2.2 Pulse Mode 53
Micro Pulse (Hyper-Pulse) 53
Pulse Shaping 54
3.3.3 Alteration of Emission 54
3.4 Fluidics 55
3.5 Vacuum Sources 56
3.6 Surge 57
3.6.1 Non-Longitudinal Phaco: Modification of Fluid Control by Power Modulations 58
3.6.2 Partial-Occlusion Phacoemulsification 59
3.7 Phacoemulsifi cation Technique and Machine Technology 60
3.7.1 Micro-incisional Phaco 60
3.7.2 Bimanual Micro-Incisional Phaco 60
3.7.3 Micro-Incisional Coaxial Phaco 60
3.7.3.1 Irrigation and Aspiration 61
3.8 Conclusion 61
Reference 61
Further Reading 62
Chapter 7 63
Coaxial Microincision Cataract Surgery Utilizing Non-Linear Ultrasonic Power: An Alternative to Bimanual Microincision Cataract Surgery 63
4.1 Introduction 63
4.2 The Fluidics of Coaxial Microincisional Phacoemulsification 64
4.3 Incision Size 66
4.4 Torsional Ultrasound 67
4.5 Conclusion 68
References 68
Chapter 8 69
Technology Available 69
5.1 How to Better Use Fluidics with MICS 69
5.1.1 Physical Considerations 69
5.1.1.1 Aspiration Effi ciency 69
5.1.1.2 Chamber Stability 70
5.1.1.3 Holdability 71
5.1.2 Surgical Considerations 74
5.1.2.1 Incision Configuration 74
5.1.2.2 Phaco Technique 75
5.1.2.3 Infusion-Assisted High-Flow High-Vacuum Phacoaspiration (Hybrid Phaco) 77
5.1.2.4 The OS3 and CataRhex SwissTech Platforms 78
Equipment 78
Machine Settings 79
References 80
Chapter 9 81
5.2 How to Use Power Modulation in MICS 81
5.2.1 Introduction 81
5.2.2 What Do Phacoemulsifi cation Machines Really Do? 81
5.2.3 The Concept of Unoccluded Flow Vacuum 81
5.2.4 The Intricacies of Ultrasound Power Modulation 82
5.2.5 The Variable Incidence of Wound Burn Rates 83
5.2.6 Measuring the Amplitude of Post-Occlusion Surge 84
References 86
Chapter 10 87
5.3 MICS with Different Platforms 87
5.3.1 MICS with the Accurus Surgical System 87
5.3.1.1 Introduction and Historic Background 87
5.3.1.2 Surgical Features of the Accurus Surgical System Useful for MICS Procedures 89
5.3.1.3 Surgical Parameters for MICS with Accurus 92
5.3.1.4 Final Considerations 94
References 95
Chapter 11 96
5.3.2 Using the Alcon Infi niti and AMO Signature for MICS 96
5.3.2.1 Introduction 96
5.3.2.2 Technology on the Alcon Infi niti 96
5.3.2.3 Setting Up the Infi niti for MICS 96
5.3.2.4 Importance of Tip Size on Machine Fluidics Settings with the Infiniti 96
5.3.2.5 Setting the Ultrasound Power and Modulation with the Infiniti for MICS 98
5.3.2.6 The Infiniti and BMICS 98
5.3.2.7 Technology for MICS on the AMO Signature 99
5.3.2.8 Applying Signature Technology to CMICS and BMICS 100
Chapter 12 101
5.3.3 MICS with Different Platforms: Stellaris Vision Enhancement System 101
5.3.3.1 Innovations in Phacoemulsifi cation 101
5.3.3.2 Evaluating the Stellaris Vision Enhancement System 103
5.3.3.3 The Advantages of BMICS 104
References 105
Chapter 13 107
Surgical Technique – How to Perform a Smooth Transition 107
References 111
Chapter 14 111
6.1 Pupil Dilation and Preoperative Preparation 111
6.1.1 Managing the Small Pupil 111
6.1.2 Techniques that Depend on the Manipulation of the Pupil 112
6.1.3 Iris Surgery 113
6.1.4 Preoperative Preparation and Infection Prophylaxis 115
6.1.5 Evaluating Risk 115
6.1.6 Assessing Your Approach 116
6.1.7 Preventing Infection, Step by Step 117
6.1.8 Sample Protocol Outline 118
6.1.9 A Careful, Critical Eye 119
References 119
Chapter 15 120
6.2 Incisions1 120
6.2.1 Side-Port Incisions 125
References 128
Chapter 16 129
6.3 Thermodynamics1 129
6.3.1 Introduction 129
6.3.2 Corneal Thermal Damage 129
6.3.3 Heat Generation 130
6.3.4 Factors that Contribute to Thermal Incision Damage 130
6.3.4.1 Energy Emission: Amount and Pattern of How the Energy Is Delivered 130
6.3.4.2 Incision: Incision Construction and Possible Constriction of the Sleeve 132
6.3.4.3 Viscoelastic Devices and Possible Occlusion of the Aspiration Line 133
6.3.4.4 Irrigation Flow 133
6.3.4.5 Position of the Tip Inside the Incision 133
6.3.4.6 Tip Design 133
6.3.4.7 Surgical Technique 134
6.3.5 Conclusion 134
References 135
Chapter 17 136
6.4 Using Ophthalmic Viscosurgical Devices with Smaller Incisions 136
6.4.1 Introduction 136
6.4.1.1 The Nature of OVDs: Rheology 137
6.4.1.2 The Classifi cation of OVDs 137
6.4.1.3 Soft Shell and Ultimate Soft Shell Technique (SST & USST)
6.4.2 Routine, Special and complicated Cases 138
6.4.2.1 Phakic and Anterior Chamber IOLs 140
6.4.2.2 Trabeculectomy and Phaotrabeculectomy 141
6.4.2.3 Fuchs’ Endothelial Dystrophy 141
6.4.2.4 Zonular Defi ciency 141
6.4.2.5 Capsular Staining for White & Black Cataracts
6.4.2.6 Flomax® Intraoperative Floppy Iris Syndrome USST 142
6.4.3 Discussion 143
References 144
Chapter 18 145
6.5 Capsulorhexis 145
References 147
Chapter 19 148
6.6 Hydrodissection and Hydrodelineation1 148
References 152
Chapter 20 153
6.7 Biaxial Microincision Cataract Surgery: Techniques and Sample Surgical Parameters 153
Chapter 21 157
6.8 Biaxial Microincision Phacoemulsification: Transition, Techniques, and Advantages 157
6.8.1 Surgical Technique 157
6.8.2 Advantages 159
6.8.3 Disadvantages 160
6.8.4 Final Thoughts 161
References 161
Chapter 22 162
6.9 BiMICS vs. CoMICS: Our Actual Technique (Bimanual Micro Cataract Surgery vs. Coaxial Micro Cataract Surgery) 162
6.9.1 Introduction 162
6.9.2 Historical Background 163
6.9.3 BiMICS. BiManual MicroIncision Cataract Surgery 163
6.9.3.1 Introduction 163
6.9.3.2 Instrumentation 163
6.9.3.3 Microphacodynamics 163
6.9.3.4 Irrigation-aspiration 164
6.9.3.5 Phacotips 165
6.9.3.6 Capsulorhexis 165
6.9.3.7 Phaco Knives 165
6.9.3.8 The Phaco Machines 165
6.9.3.9 Phaco Pumps 165
6.9.3.10 Ultrasound Power Delivery 165
6.9.3.11 IOL Implantation 165
6.9.3.12 Astigmatism 165
6.9.4 CoMICS: Coaxial MicroIncision Cataract Surgery 166
6.9.4.1 Capsulorhexis 166
6.9.4.2 Phacotips 166
6.9.4.3 The Phaco Machines 167
6.9.4.4 Phaco Pumps 167
6.9.4.5 Ultrasound Power Delivery 167
6.9.4.6 Irrigation-Aspiration 167
6.9.4.7 Incision-Assisted IOL Implantation 167
6.9.5 Conclusion 167
References 168
Chapter 23 169
6.10 Endophthalmitis Prevention 169
6.10.1 Antibiotic Prophylaxis 169
6.10.2 Wound Construction 172
6.10.3 Summary 173
References 173
Chapter 24 176
Biaxial Microincision Phacoemulsifi cation for Diffi cult and Challenging Cases 176
7.1 High Myopia 176
7.2 Posterior Polar Cataract 176
7.3 Posterior Subluxed Cataracts 177
7.4 Mature Cataract with Zonular Dialysis 177
7.5 Punctured Posterior Capsule 178
7.6 Posterior Capsule Rupture 178
7.7 Pseudoexfoliation 179
7.8 Rock-Hard Nuclei 179
7.9 Switching Hands 180
7.10 Microcornea or Microphthalmos 180
7.11 Large Iridodialysis and Zonular Defects 180
7.12 Intraoperative Floppy Iris Syndrome (IFIS) 181
7.13 Every Small Pupil Must Be Viewed as a Potential IFIS 183
7.14 Iris Bombé 184
7.15 Very Shallow Anterior Chambers 184
7.16 Refractive Lens Exchange 184
7.17 Refractive Lens Exchange in Post Radial Keratotomy (RK) 185
7.18 Intraocular Cautery 186
7.19 Biaxial Microincision Instruments 186
References 187
Chapter 25 188
7.1 MICS in Special Cases: Incomplete Capsulorhexis 188
7.1.1 Introduction 188
7.1.2 Avoiding Complications While Constructing Your Microcapsulorhexis 189
7.1.3 Avoiding Complications During Biaxial Phaco with an Incomplete Capsulorhexis 192
7.1.4 Avoiding Complications During IOL Insertion with an Incomplete Capsulorhexis 198
7.1.5 Conclusions 198
References 199
Chapter 26 200
7.2 MICS in Special Cases (on CD): Vitreous Loss 200
7.2.1 Introduction 200
7.2.2 Posterior Capsule Tears and Vitreous Prolapse 201
7.2.3 Vitreous and the Epinucleus or Cortex 204
7.2.4 Different Techniques Other than Pars Plana Vitrectomy for Nuclear Loss in Vitreous 205
7.2.5 Pars Plana Vitrectomy 205
7.2.6 Zonulolysis 205
References 206
Chapter 27 208
7.3 How to Deal with Very Hard and Intumescent Cataracts 208
7.3.1 Introduction 208
7.3.2 Types of Cataracts 209
7.3.3 Management of Hard Cataracts Through Biaxial Technique 209
7.3.4 Incision 209
7.3.5 Capsulorrhexis 211
7.3.6 Hydrodissection 213
7.3.7 Phacoemulsifi cation 214
7.3.8 Conclusion 218
References 220
Chapter 28 221
IOL Types and Implantation Techniques 221
8.1 MICS Intraocular Lenses 221
8.1.1 Introduction 221
8.1.2 Lenses 222
8.1.2.1 Zeiss – Acri.Tec MICS IOLs (Zeiss – Acri.Tec Berlin, Germany) 222
8.1.2.2 ThinOptX MICS IOLs (ThinOptX, Abingdon, VA) 224
8.1.2.3 Akreos MI60 AO Micro Incision IOL (Bausch & Lomb, Rochester, NY)
8.1.2.4 IOLtech MICS lens (IOLtech, La Rochelle, France and Carl Zeiss Meditec, Stuttgard, Germany)
8.1.2.5 TetraFlex KH-3500 and ZR-1000 (Lenstec, St. Petersburg, FL) 226
8.1.2.6 MicroSlim and SlimFlex MICS IOLs (PhysIOL, Liège, Belgium) 226
8.1.2.7 CareFlex IOL (W20 Medizintechnik AG, Bruchal, Germany) 227
8.1.2.8 AcriFlex MICS 46CSE IOL (Acrimed GmbH, Berlin, Germany) 227
8.1.2.9 Hoya Y-60H (Hoya Corporation, Tokyo, Yapan) 227
8.1.2.10 Miniflex IOL (Mediphacos Ltda., Minas Gerais, Brasil) 228
8.1.3 Optical Quality of MICS IOLs 228
8.1.4 Conclusion 229
References 231
Chapter 29 232
8.2 Implantation Techniques 232
8.2.1 Defi nition 233
8.2.2 Prerequisites to a Sub-2 Injection 233
8.2.3 IOLs Used for Injection Through Microincision 233
8.2.3.1 Material 234
8.2.3.2 Design 234
8.2.3.3 Optic Design 235
8.2.3.4 Haptic Design 235
8.2.3.5 Posterior Barrier (360°) 235
8.2.4 Injectors Meant for Microincision 235
8.2.4.1 Objectives of Injectors Meant for Microincision 236
8.2.4.2 Characteristics of Sub-2 Injectors 237
8.2.4.3 The Cartridges 238
Loading Chambers 238
Injection Tunnels and Cartridge Tips 238
8.2.4.4 The Plunger Tips (or plunger) 239
8.2.4.5 Pushing Systems 239
8.2.4.6 Injector Bodies 239
8.2.4.7 Principal Sub-2 Injectors 240
8.2.5 Visco Elastic Substances and Injection Through Microincision 241
8.2.6 Techniques of Sub-2 Injection 242
8.2.6.1 Visco-Injection Using Wound-Assisted Technique 243
8.2.6.2 Incision Construction 243
8.2.6.3 Pressurization of the Anterior Chamber 243
8.2.6.4 Loading the Cartridge 243
8.2.6.5 Loading the Injector 244
8.2.6.6 Insertion of the Plunger Tip 244
8.2.6.7 Injection in the Anterior Chamber 244
8.2.6.8 Positioning the IOL in the Capsular Bag 245
8.2.6.9 Removing the VES 245
8.2.6.10 Thin Roller Injector 245
8.2.6.11 Conclusion 245
Reference 247
Chapter 30 247
8.3 Special Lenses 247
8.3.1 Toric Posterior Chamber Intraocular Lenses in Cataract Surgery and Refractive Lens Exchange 247
8.3.1.1 Introduction 247
8.3.1.2 Definitions 248
8.3.1.3 T-IOL Calculation 249
8.3.1.4 Current T-IOL Models 249
8.3.1.5 Preoperative Marking 250
8.3.1.6 Clinical Indications 250
8.3.1.7 Custom-Made Lenses 251
8.3.1.8 Conclusion for Practice 253
References 255
Chapter 31 256
8.3.2 Special Lenses: MF 256
8.3.2.1 Discussion 257
8.3.2.2 Conclusion 257
8.3.2.3 Outlook 259
References 260
Chapter 32 261
8.3.3 Special Lenses: Aspheric 261
References 267
Chapter 33 269
8.3.4 Intraocular Lenses to Restore and Preserve Vision Following Cataract Surgery 269
8.3.4.1 Introduction 269
8.3.4.2 Why Filter Blue Light? 269
Summary 270
8.3.4.3 Importance of Blue Light to Cataract and Refractive Lens Exchange Patients 270
Summary 271
8.3.4.4 Quality of Vision with Blue Light Filtering IOLs 271
Summary 272
8.3.4.5 Clinical Experience 272
Summary 273
8.3.4.6 Unresolved Issues and Future Considerations 273
References 273
Chapter 34 275
8.3.5 Microincision Intraocular Lenses: Others 275
8.3.5.1 ThinOptX® 276
8.3.5.2 Smart IOL 277
8.3.5.3 Afi nity™ 277
8.3.5.4 AcriTec 278
8.3.5.5 Akreos 281
8.3.5.6 Tetraflex 282
8.3.5.7 Rayner 283
8.3.5.8 Injectable Polymers 285
8.3.5.9 Final Comments 287
References 288
Chapter 35 289
Outcomes 289
9.1 Safety: MICS versus Coaxial Phaco 289
9.1.1 Introduction 289
9.1.2 Visual Outcomes 290
9.1.3 Incision Damage 290
9.1.4 Corneal Incision Burn 291
9.1.5 Corneal Changes 292
9.1.6 Infection 295
9.1.7 Summary 296
References 296
Chapter 36 298
9.2 Control of Corneal Astigmatism and Aberrations 298
9.2.1 Introduction: Impacts of MICS Incision on the Outcomes of Cataract Surgery 298
9.2.2 Objective Evaluation of Corneal Incision 298
9.2.3 Control of Corneal Aberration and Astigmatism with MICS 298
9.2.4 Role of Corneal Aberrometry in Evaluating MICS Incision 299
9.2.5 Role of OCT in Evaluating MICS Incision 299
9.2.6 Our Experience in Corneal Aberrations and Astigmatism After MICS 299
9.2.7 Conclusion 301
References 303
Chapter 37 304
9.3 Corneal Endothelium and Other Safety Issues 304
References 307
Chapter 38 309
9.4 Incision Quality in MICS 309
9.4.1 Introduction: History of Incision Size Reduction 309
9.4.2 The Trends Towards Microincision Cataract Surgery (BMICS) 309
9.4.3 Advantages of Minimizing the Incision Size 309
9.4.4 Model for the Analysis of Corneal Incision Quality [21] 310
9.4.5 Our Protocol for Evaluation of Incision Quality in BMICS [21] 311
9.4.6 Results 316
9.4.6.1 Visual, Refractive and Biomicroscopic Outcomes 316
9.4.6.2 Incision Imaging (OCT) Outcomes 316
9.4.6.3 Topographic and Aberrometric Outcomes 318
9.4.7 Special Focus on the Role of OCT in the Evaluation of Incision Quality in BMICS 322
9.4.8 Conclusion 323
References 324
Index 325

Erscheint lt. Verlag 13.1.2010
Zusatzinfo XV, 319 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Augenheilkunde
Schlagworte Capsulorhexis • Cataract removal techniques • Cataract Surgery • Implant • MICs • Surgery • thermodynamics • Viscoelastics
ISBN-10 3-642-02862-4 / 3642028624
ISBN-13 978-3-642-02862-5 / 9783642028625
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Stefan J. Lang; Gerhard K. Lang

eBook Download (2024)
Thieme (Verlag)
CHF 58,60