Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Constrained Clustering -

Constrained Clustering

Advances in Algorithms, Theory, and Applications
Buch | Hardcover
470 Seiten
2008
Chapman & Hall/CRC (Verlag)
978-1-58488-996-0 (ISBN)
CHF 179,95 inkl. MwSt
Covers the capabilities and limitations of constrained clustering. This title presents various types of constraints for clustering, describes useful variations of the standard problem of clustering under constraints, and applies clustering with constraints to relational, bibliographic, and video data.
Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints.

Algorithms

The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints.

Theory

It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees.

Applications

The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints.

With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.

Sugato Basu, Ian Davidson, Kiri Wagstaff

Introduction. Semisupervised Clustering with User Feedback.Gaussian Mixture Models with Equivalence Constraints.Pairwise Constraints as Priors in Probabilistic Clustering. Clustering with Constraints: A Mean-Field Approximation Perspective.Constraint-Driven Co-Clustering of 0/1 Data.On Supervised Clustering for Creating Categorization Segmentations.Clustering with Balancing Constraints.Using Assignment Constraints to Avoid Empty Clusters in k-Means Clustering.Collective Relational Clustering.Nonredundant Data Clustering.Joint Cluster Analysis of Attribute Data and Relationship Data.Correlation Clustering.Interactive Visual Clustering for Relational Data.Distance Metric Learning from Cannot-Be-Linked Example Pairs with Application to Name Disambiguation. Privacy-Preserving Data Publishing: A Constraint-Based Clustering Approach.Learning with Pairwise Constraints for Video Object Classification. References. Index.

Erscheint lt. Verlag 4.2.2015
Reihe/Serie Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Zusatzinfo 25 Tables, black and white; 11 Halftones, black and white; 110 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 771 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
ISBN-10 1-58488-996-9 / 1584889969
ISBN-13 978-1-58488-996-0 / 9781584889960
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs für Ausbildung und Praxis

von Ralf Adams

Buch (2023)
Carl Hanser (Verlag)
CHF 41,95
Einführung in die Praxis der Datenbankentwicklung für Ausbildung, …

von René Steiner

Buch | Softcover (2021)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 69,95