Isochronous Systems
Seiten
2008
Oxford University Press (Verlag)
978-0-19-953528-6 (ISBN)
Oxford University Press (Verlag)
978-0-19-953528-6 (ISBN)
This book will be of interest to students and researchers working on dynamical systems, including integrable and nonintegrable models, with a finite or infinite number of degrees of freedom. It can be used as a textbook or as background reading for an undergraduate or graduate course.
A dynamical system is called isochronous if it features in its phase space an open, fully-dimensional region where all its solutions are periodic in all its degrees of freedom with the same, fixed period. Recently a simple transformation has been introduced, applicable to quite a large class of dynamical systems, that yields autonomous systems which are isochronous. This justifies the notion that isochronous systems are not rare.
In this book the procedure to manufacture isochronous systems is reviewed, and many examples of such systems are provided. Examples include many-body problems characterized by Newtonian equations of motion in spaces of one or more dimensions, Hamiltonian systems, and also nonlinear evolution equations (PDEs).
The book shall be of interest to students and researchers working on dynamical systems, including integrable and nonintegrable models, with a finite or infinite number of degrees of freedom. It might be used as a basic textbook, or as backup material for an undergraduate or graduate course.
A dynamical system is called isochronous if it features in its phase space an open, fully-dimensional region where all its solutions are periodic in all its degrees of freedom with the same, fixed period. Recently a simple transformation has been introduced, applicable to quite a large class of dynamical systems, that yields autonomous systems which are isochronous. This justifies the notion that isochronous systems are not rare.
In this book the procedure to manufacture isochronous systems is reviewed, and many examples of such systems are provided. Examples include many-body problems characterized by Newtonian equations of motion in spaces of one or more dimensions, Hamiltonian systems, and also nonlinear evolution equations (PDEs).
The book shall be of interest to students and researchers working on dynamical systems, including integrable and nonintegrable models, with a finite or infinite number of degrees of freedom. It might be used as a basic textbook, or as backup material for an undergraduate or graduate course.
Francesco Calogero Professor of Theoretical Physics, University of Rome "La Sapienza"
1. Introduction ; 2. Isochronous systems are not rare ; 3. A single ODE of arbitrary order ; 4. Systems of ODEs: many-body problems, nonlinear harmonic oscillators ; 5. Isochronous Hamiltonian systems are not rare ; 6. Asymptotically isochronous systems ; 7. Isochronous PDEs ; 8. Outlook ; Appendix A: Some useful identities ; Appendix B: Two proofs ; Appendix C: Diophantine findings and conjectures
Erscheint lt. Verlag | 7.2.2008 |
---|---|
Zusatzinfo | 2 black and white line drawings |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 162 x 242 mm |
Gewicht | 599 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
ISBN-10 | 0-19-953528-0 / 0199535280 |
ISBN-13 | 978-0-19-953528-6 / 9780199535286 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 62,95