Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Spline Functions on Triangulations - Ming-Jun Lai, Larry L. Schumaker

Spline Functions on Triangulations

Buch | Hardcover
608 Seiten
2007
Cambridge University Press (Verlag)
978-0-521-87592-9 (ISBN)
CHF 277,55 inkl. MwSt
Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. A detailed mathematical treatment of polynomial splines on triangulations is outlined in this text, providing a basis for developing practical methods for using splines in numerous application areas.
Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bézier representation of polynomials will provide a valuable source for researchers and students in CAGD. Chapters on smooth macro-element spaces will allow engineers and scientists using the FEM method to solve partial differential equations numerically with new tools. Workers in the geosciences will find new tools for approximation and data fitting on the sphere. Ideal as a graduate text in approximation theory, and as a source book for courses in computer-aided geometric design or in finite-element methods.

Ming-Jun Lai is a Professor of Mathematics at the University of Georgia. Larry Schumaker is the Stevenson Professor of Mathematics at Vanderbilt University.

Preface; 1. Bivariate polynomials; 2. Bernstein-Bézier methods for bivariate polynomials; 3. B-patches; 4. Triangulations and quadrangulations; 5. Bernstein-Bézier methods for spline spaces; 6. C1 Macro-element spaces; 7. C2 Macro-element spaces; 8. Cr Macro-element spaces; 9. Dimension of spline splines; 10. Approximation power of spline spaces; 11. Stable local minimal determining sets; 12. Bivariate box splines; 13. Spherical splines; 14. Approximation power of spherical splines; 15. Trivariate polynomials; 16. Tetrahedral partitions; 17. Trivariate splines; 18. Trivariate macro-element spaces; Bibliography; Index.

Erscheint lt. Verlag 19.4.2007
Reihe/Serie Encyclopedia of Mathematics and its Applications
Zusatzinfo Worked examples or Exercises; 12 Tables, unspecified; 32 Halftones, unspecified; 83 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 165 x 240 mm
Gewicht 998 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-521-87592-7 / 0521875927
ISBN-13 978-0-521-87592-9 / 9780521875929
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95