Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Introductory Mathematical Analysis for Business, Economics and the Life and Social Sciences

United States Edition
Buch | Hardcover
896 Seiten
2007 | 12th edition
Pearson (Verlag)
978-0-13-240422-8 (ISBN)
CHF 139,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
For courses in Mathematics for Business and Mathematical Methods in Business.

 

This classic text continues to provide a mathematical foundation for students in business, economics, and the life and social sciences. Abundant applications cover such diverse areas as business, economics, biology, medicine, sociology, psychology, ecology, statistics, earth science, and archaeology. Its depth and completeness of coverage enables instructors to tailor their courses to students’ needs. The authors frequently employ novel derivations that are not widespread in other books at this level. The Twelfth Edition has been updated to make the text even more student-friendly and easy to understand.

Each chapter concludes with a Review and a Mathematical Snapshot.

 

Chapter 0 Review of Algebra

0.1 Sets of Real Numbers

0.2 Some Properties of Real Numbers

0.3 Exponents and Radicals

0.4 Operations with Algebraic Expressions

0.5 Factoring

0.6 Fractions

0.7 Equations, in Particular Linear Equations

0.8 Quadratic Equations

 

Chapter 1 Applications and More Algebra

1.1 Applications of Equations

1.2 Linear Inequalities

1.3 Applications of Inequalities

1.4 Absolute Value

1.5 Summation Notation

 

Chapter 2 Functions and Graphs

2.1 Functions

2.2 Special Functions

2.3 Combinations of Functions

2.4 Inverse Functions

2.5 Graphs in Rectangular Coordinates

2.6 Symmetry

2.7 Translations and Reflections

 

Chapter 3 Lines, Parabolas, and Systems

3.1 Lines

3.2 Applications and Linear Functions

3.3 Quadratic Functions

3.4 Systems of Linear Equations

3.5 Nonlinear Systems

3.6 Applications of Systems of Equations

 

Chapter 4 Exponential and Logarithmic Functions

4.1 Exponential Functions

4.2 Logarithmic Functions

4.3 Properties of Logarithms

4.4 Logarithmic and Exponential Equations

 

Chapter 5 Mathematics of Finance

5.1 Compound Interest

5.2 Present Value

5.3 Interest Compounded Continuously

5.4 Annuities

5.5 Amortization of Loans

 

Chapter 6 Matrix Algebra

6.1 Matrices

6.2 Matrix Addition and Scalar Multiplication

6.3 Matrix Multiplication

6.4 Solving Systems by Reducing Matrices

6.5 Solving Systems by Reducing Matrices (continued)

6.6 Inverses

6.7 Leontief's Input-Output Analysis

 

Chapter 7 Linear Programming

7.1 Linear Inequalities in Two Variables

7.2 Linear Programming

7.3 Multiple Optimum Solutions

7.4 The Simplex Method

7.5 Degeneracy, Unbounded Solutions, and Multiple Solutions

7.6 Artificial Variables

7.7 Minimization

7.8 The Dual

 

Chapter 8 Introduction to Probability and Statistics

8.1 Basic Counting Principle and Permutations

8.2 Combinations and Other Counting Principles

8.3 Sample Spaces and Events

8.4 Probability

8.5 Conditional Probability and Stochastic Processes

8.6 Independent Events

8.7 Bayes' Formula

 

Chapter 9 Additional Topics in Probability

9.1 Discrete Random Variables and Expected Value

9.2 The Binomial Distribution

9.3 Markov Chains

 

Chapter 10 Limits and Continuity

10.1 Limits

10.2 Limits (Continued)

10.3 Continuity

10.4 Continuity Applied to Inequalities

 

Chapter 11 Differentiation

11.1 The Derivative

11.2 Rules for Differentiation

11.3 The Derivative as a Rate of Change

11.4 The Product Rule and the Quotient Rule

11.5 The Chain Rule and the Power Rule

 

Chapter 12 Additional Differentiation Topics

12.1 Derivatives of Logarithmic Functions

12.2 Derivatives of Exponential Functions

12.3 Elasticity of Demand

12.4 Implicit Differentiation

12.5 Logarithmic Differentiation

12.6 Newton's Method

12.7 Higher Order Derivatives

 

Chapter 13 Curve Sketching

13.1 Relative Extrema

13.2 Absolute Extrema on a Closed Interval

13.3 Concavity

13.4 The Second-Derivative Test

13.5 Asymptotes

13.6 Applied Maxima and Minima

 

Chapter 14 Integration

14.1 Differentials

14.2 The Indefinite Integral

14.3 Integration with Initial Conditions

14.4 More Integration Formulas

14.5 Techniques of Integration

14.6 The Definite Integral

14.7 The Fundamental Theorem of Integral Calculus

14.8 Approximate Integration

14.9 Area

14.10 Area Between Curves

14.11 Consumers' and Producers' Surplus

 

Chapter 15 Methods and Applications of Integration

15.1 Integration by Parts

15.2 Integration by Partial Fractions

15.3 Integration by Tables

15.4 Average Value of a Function

15.5 Differential Equations

15.6 More Applications of Differential Equations

15.7 Improper Integrals

 

Chapter 16 Continuous Random Variables

16.1 Continuous Random Variables

16.2 The Normal Distribution

16.3 The Normal Approximation to the Binomial Distribution

 

Chapter 17 Multivariable Calculus

17.1 Functions of Several Variables

17.2 Partial Derivatives

17.3 Applications of Partial Derivatives

17.4 Implicit Partial Differentiation

17.5 Higher-Order Partial Derivatives

17.6 The Chain Rule

17.7 Maxima and Minima for Functions of Two Variables

17.8 Lagrange Multipliers

17.9 Lines of Regression

17.10 Multiple Integrals

 

Appendix A Compound Interest Tables

Appendix B Table of Selected Integrals

Appendix C Areas Under the Standard Normal Curve

 

Answers to Odd-Numbered Problems

 

Index

Erscheint lt. Verlag 13.4.2007
Sprache englisch
Maße 216 x 276 mm
Gewicht 2040 g
Themenwelt Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 0-13-240422-2 / 0132404222
ISBN-13 978-0-13-240422-8 / 9780132404228
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich