Adelic Line Bundles on Quasi-Projective Varieties
Seiten
2026
Princeton University Press (Verlag)
978-0-691-27173-6 (ISBN)
Princeton University Press (Verlag)
978-0-691-27173-6 (ISBN)
- Noch nicht erschienen (ca.
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
A comprehensive new theory of adelic line bundles on quasi-projective varieties over finitely generated fields
This book introduces a comprehensive theory of adelic line bundles on quasi-projective varieties over finitely generated fields, developed in both geometric and arithmetic contexts. In the geometric setting, adelic line bundles are defined as limits of line bundles on projective compactifications under the boundary topology. In the arithmetic setting, they are defined as limits of Hermitian line bundles on projective arithmetic compactifications, also under the boundary topology. After establishing these foundational definitions, the book uses the theory to explore key concepts such as intersection theory, effective sections, volumes, and positivity of adelic line bundles. It also applies these results to study height functions of algebraic points and prove an equidistribution theorem on quasi-projective varieties. This theory has broad applications in the study of numerical, dynamical, and Diophantine properties of moduli spaces, quasi-projective varieties, and varieties over finitely generated fields.
This book introduces a comprehensive theory of adelic line bundles on quasi-projective varieties over finitely generated fields, developed in both geometric and arithmetic contexts. In the geometric setting, adelic line bundles are defined as limits of line bundles on projective compactifications under the boundary topology. In the arithmetic setting, they are defined as limits of Hermitian line bundles on projective arithmetic compactifications, also under the boundary topology. After establishing these foundational definitions, the book uses the theory to explore key concepts such as intersection theory, effective sections, volumes, and positivity of adelic line bundles. It also applies these results to study height functions of algebraic points and prove an equidistribution theorem on quasi-projective varieties. This theory has broad applications in the study of numerical, dynamical, and Diophantine properties of moduli spaces, quasi-projective varieties, and varieties over finitely generated fields.
Xinyi Yuan is a professor at the Beijing International Center for Mathematical Research of Peking University. Shou-Wu Zhang is the Eugene Higgins Professor of Mathematics at Princeton University. Yuan and Zhang are the authors, with Wei Zhang, of The Gross-Zagier Formula on Shimura Curves (Princeton).
Erscheint lt. Verlag | 13.1.2026 |
---|---|
Reihe/Serie | Annals of Mathematics Studies |
Verlagsort | New Jersey |
Sprache | englisch |
Maße | 156 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
ISBN-10 | 0-691-27173-9 / 0691271739 |
ISBN-13 | 978-0-691-27173-6 / 9780691271736 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Mathematik von Studierenden für Studierende erklärt und kommentiert
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 48,95
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95