Artificial Intelligence for Edge Computing
Springer International Publishing (Verlag)
978-3-031-40789-5 (ISBN)
- Noch nicht erschienen - erscheint am 13.01.2025
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Part I: Core Problems.- Chapter 1: Neural Network Models for Time Series Data.- Chapter 2: Self-Supervised Learning from Unlabeled IoT Data.- Chapter 3: On the Generalization Power of Overfitted Two-Layer Neural Tangent Kernel Models.- Chapter 4: Out of Distribution Detection.- Chapter 5: Model Compression for Edge Computing.- Part II: Distributed Problems.- Chapter 6: Communication Efficient Distributed Learning.- Chapter 7: Coreset-based Data Reduction for Machine Learning at the Edge.- Chapter 8: Lightweight Collaborative Perception at the Edge.- Chapter 9: Dynamic Placement of Services at the Edge.- Chapter 10: Joint Service Placement and Request Scheduling at the Edge.- Part III: Cross-cutting Thoughts.- Chapter 11: Criticality-based Data Segmentation and Resource Allocation in Machine Inference Pipelines.- Chapter 12: Model Operationalization at Edge Devices.
Erscheinungsdatum | 24.12.2024 |
---|---|
Zusatzinfo | XIV, 365 p. 113 illus., 98 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik | |
Schlagworte | Coresets • Cyber Physical Systems • Deep Hash Codes • distributed learning • Edge AI • edge computing • Edge Devices • internet of things • machine learning • mobile crowdsensing • Resource Allocation • Small Data Problem • Spiking Networks • Ultra-Low Power AI |
ISBN-10 | 3-031-40789-X / 303140789X |
ISBN-13 | 978-3-031-40789-5 / 9783031407895 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich