The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds
Seiten
2006
American Mathematical Society (Verlag)
978-0-8218-3913-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-3913-3 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Presents Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds. This book discusses differential geometric properties of the corresponding moduli spaces.
We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds, and we discuss differential geometric properties of the corresponding moduli spaces. This correspondence refers to moduli spaces of 'universal holomorphic oriented pairs'. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems) are special cases of this universal classification problem.Our Kobayashi-Hitchin correspondence relates the complex geometric concept 'polystable oriented holomorphic pair' to the existence of a reduction solving a generalized Hermitian-Einstein equation. The proof is based on the Uhlenbeck-Yau continuity method. Using ideas from Donaldson theory, we further introduce and investigate canonical Hermitian metrics on such moduli spaces. We discuss in detail remarkable classes of moduli spaces in the non-Kahlerian framework: Oriented holomorphic structures, Quot-spaces, oriented holomorphic pairs and oriented vortices, non-abelian Seiberg-Witten monopoles.
We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds, and we discuss differential geometric properties of the corresponding moduli spaces. This correspondence refers to moduli spaces of 'universal holomorphic oriented pairs'. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems) are special cases of this universal classification problem.Our Kobayashi-Hitchin correspondence relates the complex geometric concept 'polystable oriented holomorphic pair' to the existence of a reduction solving a generalized Hermitian-Einstein equation. The proof is based on the Uhlenbeck-Yau continuity method. Using ideas from Donaldson theory, we further introduce and investigate canonical Hermitian metrics on such moduli spaces. We discuss in detail remarkable classes of moduli spaces in the non-Kahlerian framework: Oriented holomorphic structures, Quot-spaces, oriented holomorphic pairs and oriented vortices, non-abelian Seiberg-Witten monopoles.
Introduction The finite dimensional Kobayashi-Hitchin correspondence A ""universal"" complex geometric classification problem Hermitian-Einstein pairs Polystable pairs allow Hermitian-Einstein reductions Examples and applications Appendix Bibliography.
Erscheint lt. Verlag | 30.8.2006 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 213 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
ISBN-10 | 0-8218-3913-6 / 0821839136 |
ISBN-13 | 978-0-8218-3913-3 / 9780821839133 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
fundiert, vielseitig, praxisnah
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 46,15
Analysis und Lineare Algebra mit Querverbindungen
Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 89,95