Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Subspace, Latent Structure and Feature Selection -

Subspace, Latent Structure and Feature Selection

Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers
Buch | Softcover
X, 209 Seiten
2006 | 2006
Springer Berlin (Verlag)
978-3-540-34137-6 (ISBN)
CHF 74,85 inkl. MwSt
lt;p>This book constitutes the thoroughly refereed post-proceedings of the PASCAL (pattern analysis, statistical modelling and computational learning) Statistical and Optimization Perspectives Workshop on Subspace, Latent Structure and Feature Selection techniques, SLSFS 2005. The 9 revised full papers presented together with 5 invited papers reflect the key approaches that have been developed for subspace identification and feature selection using dimension reduction techniques, subspace methods, random projection methods, among others.

Invited Contributions.- Discrete Component Analysis.- Overview and Recent Advances in Partial Least Squares.- Random Projection, Margins, Kernels, and Feature-Selection.- Some Aspects of Latent Structure Analysis.- Feature Selection for Dimensionality Reduction.- Contributed Papers.- Auxiliary Variational Information Maximization for Dimensionality Reduction.- Constructing Visual Models with a Latent Space Approach.- Is Feature Selection Still Necessary?.- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data.- Incorporating Constraints and Prior Knowledge into Factorization Algorithms - An Application to 3D Recovery.- A Simple Feature Extraction for High Dimensional Image Representations.- Identifying Feature Relevance Using a Random Forest.- Generalization Bounds for Subspace Selection and Hyperbolic PCA.- Less Biased Measurement of Feature Selection Benefits.

Erscheint lt. Verlag 16.5.2006
Reihe/Serie Lecture Notes in Computer Science
Theoretical Computer Science and General Issues
Zusatzinfo X, 209 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 322 g
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte 3D • algorithm • Algorithm analysis and problem complexity • Algorithmic Learning • algorithms • Bayesian inference • Calculus • Clustering • dimension reduction • Feature Selection • image reconstruction • latent structure analysis • learning • machine learning • optimisation methods • Optimization • Statistica • Statistical Analysis • Statistical Learning • statistical modeling
ISBN-10 3-540-34137-4 / 3540341374
ISBN-13 978-3-540-34137-6 / 9783540341376
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15