Knowledge Discovery in Inductive Databases
Springer Berlin (Verlag)
978-3-540-33292-3 (ISBN)
Invited Papers.- Data Mining in Inductive Databases.- Mining Databases and Data Streams with Query Languages and Rules.- Contributed Papers.- Memory-Aware Frequent k-Itemset Mining.- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data.- Experiment Databases: A Novel Methodology for Experimental Research.- Quick Inclusion-Exclusion.- Towards Mining Frequent Queries in Star Schemes.- Inductive Databases in the Relational Model: The Data as the Bridge.- Transaction Databases, Frequent Itemsets, and Their Condensed Representations.- Multi-class Correlated Pattern Mining.- Shaping SQL-Based Frequent Pattern Mining Algorithms.- Exploiting Virtual Patterns for Automatically Pruning the Search Space.- Constraint Based Induction of Multi-objective Regression Trees.- Learning Predictive Clustering Rules.
Erscheint lt. Verlag | 31.3.2006 |
---|---|
Reihe/Serie | Information Systems and Applications, incl. Internet/Web, and HCI | Lecture Notes in Computer Science |
Zusatzinfo | VIII, 252 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 830 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Schlagworte | algorithms • classification • Clustering • constraint-based mining • Database • Data Management • Data Mining • inductive databases • Knowledge Discovery • learning • machine learning • multi-objective regression • pattern mining • Query Languages • query optimization |
ISBN-10 | 3-540-33292-8 / 3540332928 |
ISBN-13 | 978-3-540-33292-3 / 9783540332923 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich