Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Symmetries, Lie Algebras and Representations - Jürgen Fuchs, Christoph Schweigert

Symmetries, Lie Algebras and Representations

A Graduate Course for Physicists
Buch | Hardcover
460 Seiten
1997
Cambridge University Press (Verlag)
978-0-521-56001-6 (ISBN)
CHF 157,10 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.
This is an introduction to Lie algebras and their applications in physics. The first three chapters show how Lie algebras arise naturally from symmetries of physical systems and illustrate through examples much of their general structure. Chapters 4 to 13 give a detailed introduction to Lie algebras and their representations, covering the Cartan-Weyl basis, simple and affine Lie algebras, real forms and Lie groups, the Weyl group, automorphisms, loop algebras and highest weight representations. Chapters 14 to 22 cover specific further topics, such as Verma modules, Casimirs, tensor products and Clebsch-Gordan coefficients, invariant tensors, subalgebras and branching rules, Young tableaux, spinors, Clifford algebras and supersymmetry, representations on function spaces, and Hopf algebras and representation rings. A detailed reference list is provided, and many exercises and examples throughout the book illustrate the use of Lie algebras in real physical problems. The text is written at a level accessible to graduate students, but will also provide a comprehensive reference for researchers.

Preface; 1. Symmetries and conservation laws; 2. Basic examples; 3. The Lie algebra su(3) and hadron symmetries; 4. Formalization: algebras and Lie algebras; 5. Representations; 6. The Cartan-Weyl basis; 7. Simple and affine Lie algebras; 8. Real Lie algebras and real forms; 9. Lie groups; 10. Symmetries of the root system. The Weyl group; 11. Automorphisms of Lie algebras; 12. Loop algebras and central extensions; 13. Highest weight representations; 14. Verma modules, Casimirs, and the character formula; 15. Tensor products of representations; 16. Clebsch-Gordan coefficients and tensor operators; 17. Invariant tensors; 18. Subalgebras and branching rules; 19. Young tableaux and the symmetric group; 20. Spinors, Clifford algebras, and supersymmetry; 21. Representations on function spaces; 22. Hopf algebras and representation rings; Epilogue; References; Index.

Erscheint lt. Verlag 24.7.1997
Reihe/Serie Cambridge Monographs on Mathematical Physics
Zusatzinfo Worked examples or Exercises; 18 Tables, unspecified; 36 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 181 x 255 mm
Gewicht 1066 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Naturwissenschaften Physik / Astronomie
ISBN-10 0-521-56001-2 / 0521560012
ISBN-13 978-0-521-56001-6 / 9780521560016
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich