Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Event Detection in Time Series - Eduardo Ogasawara, Rebecca Salles, Fabio Porto, Esther Pacitti

Event Detection in Time Series

Buch | Hardcover
XII, 178 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-75940-6 (ISBN)
CHF 59,90 inkl. MwSt
  • Noch nicht erschienen - erscheint am 15.02.2025
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics.

Eduardo Ogasawara has been a professor at the Department of Computer Science at the Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) since 2010. He holds a D.Sc. in Systems and Computer Engineering from COPPE/UFRJ. Between 2000 and 2007, he worked in the Information Technology (IT) sector, gaining extensive experience in workflows and project management. With a strong background in Data Science, he is currently focused on Data Mining and Time Series Analysis. He is a member of IEEE, ACM, and SBC. Throughout his career, he has authored numerous published articles and led projects funded by agencies such as CNPq and FAPERJ. Currently, he heads the Data Analytics Lab (DAL) at CEFET/RJ, where he continues to advance research in Data Science.

Rebecca Salles is a postdoctoral researcher at the Institut National de Recherche en Sciences et Technologies du Numérique (INRIA) in France. She holds a PhD in Production Engineering and Systems (2023), an M.Sc. (with Honors, best dissertation award - SBBD 2021) (2019) and B.Sc. (Summa Cum Laude, third best research award - CSBC 2017) (2016) in Computer Science, and a Technical degree in Industrial Informatics (2010) from the Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) in Brazil. As a data scientist, her research currently focuses on the topics of Data Mining, specializing in Time Series Analytics since 2014, including data pre-processing, predictive analysis, and event detection. She is an ACM member and authored over 30 scientific products, including public frameworks and research papers published in well-known international conferences and scientific journals, also acting as a reviewer for DMKD, TKDE, and SBBD.

Fabio Porto is a Senior Researcher at the National Laboratory of Scientific Computing (LNCC) in Brazil. He is the founder of the Data Extreme Lab (DEXL) and the head of the AI Institute at LNCC. He holds an INRIA International Chair (2024-2028) at INRIA, France. Fabio earned his PhD in Informatics from PUC-Rio in 2001, in Brazil, with a research stay at INRIA (1999-2000), and completed a postdoc at the École Polytechnique Fédérale de Lausanne (EPFL) from 2004 to 2008. He has published more than 80 research papers in international conferences and scientific journals, including VLDB, SIGMOD, ICDE, and SBBD. He served as General Chair of VLDB 2018 and SBBD 2015. His main research interests include Data Management, Data-Driven AI, and Safety AI. He is a member of ACM and SBC. 

Esther Pacitti is a professor of computer science at University of Montpellier. She is a senior researcher and co-head of the Zenith team at LIRMM, pursuing research in distributed data management. Previously, she was an assistant professor at University of Nantes (2002-2009) and a member of Atlas INRIA team. She obtained her "Habilitation à Diriger les Recherches" (HDR) degree in 2008 on the topic of data replication on different contexts (data warehouses, clusters and peer-to-peer systems). Since 2004 she has served or is serving as program committee member of major international conferences (VLDB, SIGMOD, CIKM, etc.) and has edited and co-authored several books. She has also published a significant amount of technical papers and journal papers in well-known international conferences and journals.

Introduction.- Time Series Analysis.- Anomaly Detection.- Change Points and Concept Drift Detection.- Motif Discovery.- Online Event Detection.- Evaluation Metrics.- Conclusion.

Erscheint lt. Verlag 15.2.2025
Reihe/Serie Synthesis Lectures on Data Management
Zusatzinfo XII, 178 p. 65 illus., 53 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 168 x 240 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Data Analysis • Data Anomaly Detection • Data Motif Discovery • event detection • Taxonomy of Events
ISBN-10 3-031-75940-0 / 3031759400
ISBN-13 978-3-031-75940-6 / 9783031759406
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20