Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Measure Theoretic Laws for Lim Sup Sets - Victor Beresnevich, Detta Dickinson, Sanju Velani

Measure Theoretic Laws for Lim Sup Sets

Buch | Softcover
91 Seiten
2005
American Mathematical Society (Verlag)
978-0-8218-3827-3 (ISBN)
CHF 109,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Given a compact metric space $(/Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $/psi$, we consider a natural class of lim sup subsets $/Lambda(/psi)$ of $/Omega$. The classical lim sup set $W(/psi)$ of $/p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $/Lambda(/psi)$ to be either positive or full in $/Omega$ and for the Hausdorff $f$-measure to be infinite.The classical theorems of Khintchine-Groshev and Jarnik concerning $W(/psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarnik's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarnik's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.

Introduction Ubiquity and conditions on the general setp The statements of the main theorems Remarks and corollaries to Theorem 1 Remarks and corollaries to Theorem 2 The classical results Hausdorff measures and dimension Positive and full $m$-measure sets Proof of Theorem 1 Proof of Theorem 2: $0/leq G < /infty$ Proof of Theorem 2: $G= /infty$ Applications Bibliography.

Erscheint lt. Verlag 31.12.2006
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Gewicht 227 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-8218-3827-X / 082183827X
ISBN-13 978-0-8218-3827-3 / 9780821838273
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95