Machine Learning
Academic Press Inc (Verlag)
978-0-443-29238-5 (ISBN)
Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all methods and techniques are explained in depth, supported by examples and problems, providing an invaluable resource to the student and researcher for understanding and applying machine learning concepts.
Sergios Theodoridis is professor emeritus of machine learning and data processing with the National and Kapodistrian University of Athens, Athens, Greece. He has also served as distinguished professor with the Aalborg University Denmark and as professor with the Chinese University of Hong Kong, Shenzhen, China. In 2023, he received an honorary doctorate degree (D.Sc) from the University of Edinburgh, U.K. He has also received a number of prestigious awards, including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2017 European Association for Signal Processing (EURASIP) Athanasios Papoulis Award, the 2014 IEEE Signal Processing Society Carl Friedrich Gauss Education Award, and the 2014 EURASIP Meritorious Service Award. He has served as president of EURASIP and vice president for the IEEE Signal Processing Society. He is a Fellow of EURASIP and a Life Fellow of IEEE. He is the coauthor of the book Pattern Recognition, 4th edition, Academic Press, 2009 and of the book Introduction to Pattern Recognition: A MATLAB Approach, Academic Press, 2010.
1. Introduction
2. Probability and Stochastic Processes
3. Learning in Parametric Modelling: Basic Concepts and Directions
4. Mean-Square Error Linear Estimation
5. Stochastic Gradient Descent: the LMS Algorithm and its Family
6. The Least-Squares Family
7. Classification: A Tour of the Classics
8. Parameter Learning: A Convex Analytic Path
9. Sparsity-Aware Learning: Concepts and Theoretical Foundations
10. Sparsity-Aware Learning: Algorithms and Applications
11. Learning in Reproducing Kernel Hilbert Spaces
12. Bayesian Learning: Inference and the EM Algorithm
13. Bayesian Learning: Approximate Inference and Nonparametric Models
14. Monte Carlo Methods
15. Probabilistic Graphical Models: Part 1
16. Probabilistic Graphical Models: Part 2
17. Particle Filtering
18. Neural Networks and Deep Learning: Part 1
19. Neural Networks and Deep Learning: Part 2
20. Dimensionality Reduction and Latent Variables Modeling
| Erscheinungsdatum | 23.04.2025 |
|---|---|
| Verlagsort | San Diego |
| Sprache | englisch |
| Maße | 191 x 235 mm |
| Gewicht | 2000 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik | |
| ISBN-10 | 0-443-29238-8 / 0443292388 |
| ISBN-13 | 978-0-443-29238-5 / 9780443292385 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich