Essential Guide to LLMOps (eBook)
190 Seiten
Packt Publishing (Verlag)
978-1-83588-751-6 (ISBN)
The rapid advancements in large language models (LLMs) bring significant challenges in deployment, maintenance, and scalability. This Essential Guide to LLMOps provides practical solutions and strategies to overcome these challenges, ensuring seamless integration and the optimization of LLMs in real-world applications.
This book takes you through the historical background, core concepts, and essential tools for data analysis, model development, deployment, maintenance, and governance. You'll learn how to streamline workflows, enhance efficiency in LLMOps processes, employ LLMOps tools for precise model fine-tuning, and address the critical aspects of model review and governance. You'll also get to grips with the practices and performance considerations that are necessary for the responsible development and deployment of LLMs. The book equips you with insights into model inference, scalability, and continuous improvement, and shows you how to implement these in real-world applications.
By the end of this book, you'll have learned the nuances of LLMOps, including effective deployment strategies, scalability solutions, and continuous improvement techniques, equipping you to stay ahead in the dynamic world of AI.
Unlock the secrets to mastering LLMOps with innovative approaches to streamline AI workflows, improve model efficiency, and ensure robust scalability, revolutionizing your language model operations from start to finishKey FeaturesGain a comprehensive understanding of LLMOps, from data handling to model governanceLeverage tools for efficient LLM lifecycle management, from development to maintenanceDiscover real-world examples of industry cutting-edge trends in generative AI operationPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionThe rapid advancements in large language models (LLMs) bring significant challenges in deployment, maintenance, and scalability. This Essential Guide to LLMOps provides practical solutions and strategies to overcome these challenges, ensuring seamless integration and the optimization of LLMs in real-world applications. This book takes you through the historical background, core concepts, and essential tools for data analysis, model development, deployment, maintenance, and governance. You ll learn how to streamline work?ows, enhance e?ciency in LLMOps processes, employ LLMOps tools for precise model ?ne-tuning, and address the critical aspects of model review and governance. You ll also get to grips with the practices and performance considerations that are necessary for the responsible development and deployment of LLMs. The book equips you with insights into model inference, scalability, and continuous improvement, and shows you how to implement these in real-world applications. By the end of this book, you ll have learned the nuances of LLMOps, including effective deployment strategies, scalability solutions, and continuous improvement techniques, equipping you to stay ahead in the dynamic world of AI.What you will learnUnderstand the evolution and impact of LLMs in AIDifferentiate between LLMOps and traditional MLOpsUtilize LLMOps tools for data analysis, preparation, and fine-tuningMaster strategies for model development, deployment, and improvementImplement techniques for model inference, serving, and scalabilityIntegrate human-in-the-loop strategies for refining LLM outputsGrasp the forefront of emerging technologies and practices in LLMOpsWho this book is forThis book is for machine learning professionals, data scientists, ML engineers, and AI leaders interested in LLMOps. It is particularly valuable for those developing, deploying, and managing LLMs, as well as academics and students looking to deepen their understanding of the latest AI and machine learning trends. Professionals in tech companies and research institutions, as well as anyone with foundational knowledge of machine learning will find this resource invaluable for advancing their skills in LLMOps.]]>
Erscheint lt. Verlag | 31.7.2024 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
ISBN-10 | 1-83588-751-1 / 1835887511 |
ISBN-13 | 978-1-83588-751-6 / 9781835887516 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich