Arduino (eBook)
887 Seiten
Rheinwerk Computing (Verlag)
978-3-367-10281-5 (ISBN)
Die Arduino-Community stellt Makern eine ausgezeichnete Grundlage für eigene Projekte zur Verfügung. Die offene Mikrocontroller-Architektur und eine komfortable Entwicklungsumgebung machen den Arduino zum idealen Ausgangspunkt für die eigenen Bastelprojekte. Dass Sie mit dem Arduino aber noch viel mehr machen können als nur LEDs leuchten zu lassen, beweist dieses umfassende Handbuch: Von der Temperaturmessung bis zum maschinellen Lernen und der anspruchsvollen Auswertung von Daten finden Sie hier Beispiele und Erklärungen zu allen Fragen, die Elektronikbegeisterte interessieren.
Aus dem Inhalt:
- Modellübersicht: Mikrocontroller für Maker
- Breadboards, Löten, Stromversorgung
- Entwicklungsumgebung und Programmierung
- Schaltungsdesign mit Fritzing und Eagle
- Sensoren: Temperatur, Feuchtigkeit, Bewegung, Ultraschall, Luftqualität u. v. m.
- Displays: LED, LCD, OLED, Touchscreens
- Relais, Motoren, Schaltaktoren
- Speicher: EEPROM, FRAM
- WLAN, Bluetooth, BLE, GSM, LoRa, LoRaWAN, LTE-M, NB-IoT
- UART, SPI, I²C, 1-Wire
- IoT-Anwendungen in der Cloud: WQTT, Thingspeak, Pushover, Dweet.io
- Projektideen für Maker: von der Messung des Raumklimas und Radioaktivität bis zum Einsatz von Kameras
Dr. Claus Kühnel studierte Informationstechnik an der Technischen Universität Dresden und hat über viele Jahre Embedded Systems für die Labordiagnostik u.a. entwickelt. In diesem interdisziplinären Spannungsfeld kam er mit der Maker-Szene in Berührung. Er hat zahlreiche Artikel und Bücher zu Hard- und Software von Mikrocontrollern im In- und Ausland veröffentlicht. Von der Zeitschrift Elektronik erhielt sein Beitrag 'Arduino & Co' die Auszeichnung 'Artikel des Jahres 2011'. Mit Leidenschaft gibt er sein umfangreiches und fundiertes Wissen an interessierte Leser weiter.
1.4 Arduino Uno Rev3 – der Standard
Arduino Uno ist das Arduino-Board, dessen Kern der von Atmel entwickelte Mikrocontroller ATmega328P ist. Auch nach der Übernahme von Atmel durch Microchip wird dieser verbreitete Controller unverändert gefertigt. Auf dem Board ist alles vorhanden, was zur Unterstützung des Mikrocontrollers benötigt wird. Abbildung 1.2 zeigt einen Arduino Uno Rev3.
Die spezielle Form des Arduino Uno Rev3, der Arduino-Uno-Formfaktor, ist praktisch standardisiert, sodass andere Boards, die sogenannten Arduino-Shields, egal von welchem Hersteller sie stammen, über die Arduino-Buchsenleisten kontaktiert werden können.
Abbildung 1.2 Arduino Uno Rev3
1.4.1 Ein- und Ausgangspins
Wie Sie in Abbildung 1.2 sehen können, verfügt der Arduino Uno über 20 digitale Eingangs- bzw. Ausgangspins, sechs analoge Eingänge, einen 16-MHz-Quarz, einen USB-Anschluss, eine Netzbuchse, einen ICSP-Header für das In-Circuit Serial Programming (ICSP) und eine Reset-Taste.
ICSP ist eine der verschiedenen Methoden zur Programmierung von Arduino-Boards. Normalerweise wird ein Arduino-Bootloader-Programm zum Programmieren eines Arduinos verwendet, der einen seriellen Programm-Upload ermöglicht. Wenn der Bootloader jedoch fehlt oder beschädigt ist, kann stattdessen ICSP verwendet werden.
Die nach außen hin verfügbaren Anschlüsse sind den beiden Buchsenleisten (Headern) zugeordnet 1. An der linken Seite des Arduino Uno sind oben eine USB-Buchse vom Typ B (USB Jack) 2 und darunter die Buchse zur Spannungsversorgung (Power Jack) 3 angeordnet.
Die Pinbelegung der nach außen führenden Buchsenleisten entnehmen Sie Abbildung 1.3. Deutlich zu sehen ist, dass jedem Anschluss mehrere Funktionen zugeordnet sind. Welche Funktion wirksam wird, bestimmt die vor dem Programmstart vorzunehmende Initialisierung.
Von den insgesamt 20 digitalen I/O-Pins können sechs als PWM-Ausgang und sechs als analoger Eingang fungieren. PWM bezeichnet die Pulsweitenmodulation (Pulse Width Modulation), bei der die Information im Tastverhältnis (Duty Cycle) gemäß Abbildung 1.4 liegt.
Abbildung 1.3 Pinbelegung beim Arduino Uno Rev3
Abbildung 1.4 PWM
PWM-Signale lassen sich sehr gut für die Helligkeitssteuerung von LEDs oder für die Steuerung der Drehzahl von DC-Motoren verwenden. Mit analogWrite(value) steht in Abbildung 1.4 auch bereits die zugehörige Anweisung zur Ausgabe – was es damit genau auf sich hat, erfahren Sie in Abschnitt 4.6.2.
1.4.2 Serielle Schnittstellen
Die Pinbelegung zeigt drei serielle Schnittstellen, die für den Einsatz des Arduino sehr wichtig sind:
Pins | Bedeutung |
---|
TX, RX | Serielle Schnittstelle für Programm-Upload und Kommunikation (UART) |
SCL, SDA | I2C-Bus |
SCK, MISO, MOSI | SPI-Bus |
Tabelle 1.1 Arduino Uno – serielle Schnittstellen
Mit diesen Kommunikationsschnittstellen werden Sie immer wieder in Kontakt kommen, denn neben den analogen und digitalen Ein-/Ausgängen stellen diese Schnittstellen Verbindungen zu anderen Komponenten oder Controllern her und ermöglichen erst den für Mikrocontroller-Anwendungen so wichtigen Datenaustausch.
1.4.3 Spannungsversorgung
Den Arduino Uno können Sie auf unterschiedlichen Wegen mit Spannung versorgen. Die Spannungsversorgung kann am einfachsten über den USB-Anschluss erfolgen, der ohnehin für den Programm-Upload benötigt wird. Bedenken Sie allerdings, dass die USB-2.0-Ports, die heute noch in vielen PCs verbaut werden, gemäß Spezifikation nur einen Strom von maximal 500 mA liefern. Der USB-Anschluss kann also den Strombedarf in vielen Fällen nicht decken.
Spannungsversorgung über USB
Die Spannungsversorgung über den USB-Anschluss eines Rechners kann nicht immer zuverlässig die benötigte Spannung bereitstellen. Zum Ausprobieren ist es ein guter Anfang, aber wenn Sie den Arduino mit Zusatzschaltungen erweitern, brauchen Sie ein richtiges Netzteil.
Bei der Spannungsversorgung über den Power Jack (Hohlstecker) sollte das eingesetzte Steckernetzteil eine Gleichspannung zwischen 7 und 12 V liefern. Die Stromaufnahme des Arduino Uno hängt stark von den angeschlossenen Lasten ab und kann ohne diese nicht zuverlässig angegeben werden.
Ein Steckernetzteil, das in der Lage ist, einen Strom von 1 A zu liefern, ist aber erst einmal ein sicherer Anfang. Reichelt bietet ein solches Netzteil unter der Bezeichnung HNP 12-120L6 für unter 10 € an (https://cdn-reichelt.de/documents/datenblatt/D400/HNP12.pdf).
Die Spannungszuführung kann aber auch über den Anschluss VIN erfolgen.
Wenn Sie den Arduino Uno über ein USB-Kabel mit einem Computer verbinden und die Spannungsversorgung über ein Netzteil oder einen Akku vornehmen, dann sind Sie bereits für das Abenteuer Arduino gerüstet.
1.4.4 Mikrocontroller ATmega328P
Der Mikrocontroller ATmega328P ist in einem klassischen DIL-Gehäuse (Dual-in-Line) auf dem Board gesockelt und kann daher ersetzt werden, wenn wirklich einmal alles schiefgegangen ist.
Für einen Austausch 1:1 müssen Sie einen ATmega328P mit programmiertem Bootloader verwenden. Den bekommen Sie für 5,40 € bei Reichelt. Der ATmega328P ohne Bootloader kostet bei Reichelt nur 3,33 €:
Wie Sie später noch sehen werden, gibt es auch einen Arduino Uno mit einem ATmega328P im SMD-Gehäuse. Da ist ein Wechsel aber nicht so einfach.
1.4.5 Warum eigentlich die Bezeichnung »Uno«?
Nachdem Sie einen ersten Eindruck von der Hardware des Arduino Uno gewinnen konnten und ich auch schon angedeutet habe, dass es weitere Arduinos gibt, möchte ich noch kurz etwas zur Namensgebung schreiben.
Vor dem Arduino Uno gab es bereits andere Arduinos. Mit dem Uno (»uno« bedeutet auf Italienisch »eins«) wurde die Bereitstellung der Arduino-Entwicklungsumgebung 1.0 (Arduino IDE 1.0) markiert. Arduino Uno und die Version 1.0 der Arduino IDE sind also die Referenzversionen von Arduino, die im Laufe der Jahre zu neueren Versionen weiterentwickelt wurden.
Heute existiert eine breite Palette von Arduino-Boards, von denen ich Ihnen wegen ihrer unterschiedlichen Ausstattungsmerkmale und Performance noch einige vorstellen werde. Die jetzt als Legacy Arduino bezeichnete Arduino IDE liegt in Version 1.8 für alle gängigen Betriebssysteme vor.
Der Arduino Uno bleibt damit immer noch die Hardware-Basis des Arduino-Universums und ist mit dem ATmega328P eine ausgezeichnete Ausgangsbasis für die Umsetzung von Programmideen in laufende Mikrocontroller-Anwendungen.
Wenn Sie bei der Arbeit mit dem Arduino Uno eine gewisse Sicherheit gewonnen haben, dann ist der Schritt hin zu komplexeren Arduinos wesentlich einfacher.
Keine Angst beim Umgang mit dem Arduino Uno!
Der Arduino Uno ist ein robustes Board, weshalb Sie keine Angst beim Ausprobieren von Neuem und...
Erscheint lt. Verlag | 1.8.2024 |
---|---|
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
ISBN-10 | 3-367-10281-4 / 3367102814 |
ISBN-13 | 978-3-367-10281-5 / 9783367102815 |
Haben Sie eine Frage zum Produkt? |
Größe: 72,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich