Adversarial AI Attacks, Mitigations, and Defense Strategies (eBook)
586 Seiten
Packt Publishing (Verlag)
978-1-83508-867-8 (ISBN)
Adversarial attacks trick AI systems with malicious data, creating new security risks by exploiting how AI learns. This challenges cybersecurity as it forces us to defend against a whole new kind of threat. This book demystifies adversarial attacks and equips cybersecurity professionals with the skills to secure AI technologies, moving beyond research hype or business-as-usual strategies.
The strategy-based book is a comprehensive guide to AI security, presenting a structured approach with practical examples to identify and counter adversarial attacks. This book goes beyond a random selection of threats and consolidates recent research and industry standards, incorporating taxonomies from MITRE, NIST, and OWASP. Next, a dedicated section introduces a secure-by-design AI strategy with threat modeling to demonstrate risk-based defenses and strategies, focusing on integrating MLSecOps and LLMOps into security systems. To gain deeper insights, you'll cover examples of incorporating CI, MLOps, and security controls, including open-access LLMs and ML SBOMs. Based on the classic NIST pillars, the book provides a blueprint for maturing enterprise AI security, discussing the role of AI security in safety and ethics as part of Trustworthy AI.
By the end of this book, you'll be able to develop, deploy, and secure AI systems effectively.
Understand how adversarial attacks work against predictive and generative AI, and learn how to safeguard AI and LLM projects with practical examples leveraging OWASP, MITRE, and NISTKey FeaturesUnderstand the connection between AI and security by learning about adversarial AI attacksDiscover the latest security challenges in adversarial AI by examining GenAI, deepfakes, and LLMsImplement secure-by-design methods and threat modeling, using standards and MLSecOps to safeguard AI systemsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionAdversarial attacks trick AI systems with malicious data, creating new security risks by exploiting how AI learns. This challenges cybersecurity as it forces us to defend against a whole new kind of threat. This book demystifies adversarial attacks and equips cybersecurity professionals with the skills to secure AI technologies, moving beyond research hype or business-as-usual strategies. The strategy-based book is a comprehensive guide to AI security, presenting a structured approach with practical examples to identify and counter adversarial attacks. This book goes beyond a random selection of threats and consolidates recent research and industry standards, incorporating taxonomies from MITRE, NIST, and OWASP. Next, a dedicated section introduces a secure-by-design AI strategy with threat modeling to demonstrate risk-based defenses and strategies, focusing on integrating MLSecOps and LLMOps into security systems. To gain deeper insights, you ll cover examples of incorporating CI, MLOps, and security controls, including open-access LLMs and ML SBOMs. Based on the classic NIST pillars, the book provides a blueprint for maturing enterprise AI security, discussing the role of AI security in safety and ethics as part of Trustworthy AI. By the end of this book, you ll be able to develop, deploy, and secure AI systems effectively.What you will learnUnderstand poisoning, evasion, and privacy attacks and how to mitigate themDiscover how GANs can be used for attacks and deepfakesExplore how LLMs change security, prompt injections, and data exposureMaster techniques to poison LLMs with RAG, embeddings, and fine-tuningExplore supply-chain threats and the challenges of open-access LLMsImplement MLSecOps with CIs, MLOps, and SBOMsWho this book is forThis book tackles AI security from both angles - offense and defense. AI builders (developers and engineers) will learn how to create secure systems, while cybersecurity professionals, such as security architects, analysts, engineers, ethical hackers, penetration testers, and incident responders will discover methods to combat threats and mitigate risks posed by attackers. The book also provides a secure-by-design approach for leaders to build AI with security in mind. To get the most out of this book, you ll need a basic understanding of security, ML concepts, and Python. ]]>
Erscheint lt. Verlag | 26.7.2024 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Netzwerke ► Sicherheit / Firewall |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 1-83508-867-8 / 1835088678 |
ISBN-13 | 978-1-83508-867-8 / 9781835088678 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich