Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning - kurz & gut -  Oliver Zeigermann,  Chi Nhan Nguyen

Machine Learning - kurz & gut (eBook)

Eine Einführung mit Python, Scikit-Learn und TensorFlow
eBook Download: PDF
2024 | 3. Auflage
278 Seiten
O'Reilly Verlag
978-3-96010-856-6 (ISBN)
Systemvoraussetzungen
19,90 inkl. MwSt
(CHF 19,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Der kompakte Schnelleinstieg in Machine Learning und Deep Learning - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps - Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung - Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innenMachine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: - Datenvorbereitung, Feature-Auswahl, Modellvalidierung - Supervised und Unsupervised Learning - Neuronale Netze und Deep Learning - Reinforcement Learning - LLMs - moderne Sprachmodelle - MLOps - Machine Learning für die PraxisAnhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Notebooks experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen.

Oliver Zeigermann ist Entwickler, Architekt, Berater und Coach aus Hamburg. Über die letzten Jahrzehnte hat er Software in vielen unterschiedlichen Sprachen und Technologien entwickelt. In den letzten Jahren ist er tiefer in die Analyse und Verarbeitung von Daten eingestiegen. Chi Nhan Nguyen arbeitet als Senior Data Scientist bei der softgarden e-recruiting GmbH. Seine Stationen im akademischen Ausland waren u.a. das Fermilab, die Texas A&M University, der Teilchenbeschleuniger LHC am CERN und die Columbia University.

Oliver Zeigermann ist Entwickler, Architekt, Berater und Coach aus Hamburg. Über die letzten Jahrzehnte hat er Software in vielen unterschiedlichen Sprachen und Technologien entwickelt. In den letzten Jahren ist er tiefer in die Analyse und Verarbeitung von Daten eingestiegen. Chi Nhan Nguyen arbeitet als Senior Data Scientist bei der softgarden e-recruiting GmbH. Seine Stationen im akademischen Ausland waren u.a. das Fermilab, die Texas A&M University, der Teilchenbeschleuniger LHC am CERN und die Columbia University.

Erscheint lt. Verlag 30.7.2024
Reihe/Serie kurz & gut
Verlagsort Heidelberg
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte AI • Algorithmen • Artificial Intelligence • ChatGPT • Deep learning • KI • Künstliche Intelligenz • Large Language Models • LLMS • machine learning • Maschinelles Lernen • MLOps • Neuronale Netze • Python • Reinforcement Learning • Unsupervised Learning
ISBN-10 3-96010-856-7 / 3960108567
ISBN-13 978-3-96010-856-6 / 9783960108566
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 34,95
Deterministische und randomisierte Algorithmen

von Volker Turau; Christoph Weyer

eBook Download (2024)
De Gruyter (Verlag)
CHF 63,45
Das Handbuch für Webentwickler

von Philip Ackermann

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 38,95