Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning for Engineers - Marcus J. Neuer

Machine Learning for Engineers

Introduction to Physics-Informed, Explainable Learning Methods for AI in Engineering Applications

(Autor)

Buch | Softcover
XVII, 241 Seiten
2024
Springer Berlin (Verlag)
978-3-662-69994-2 (ISBN)
CHF 74,85 inkl. MwSt
  • Noch nicht erschienen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Machine learning and artificial intelligence are ubiquitous terms for improving technical processes. However, practical implementation in real-world problems is often difficult and complex.

This textbook explains learning methods based on analytical concepts in conjunction with complete programming examples in Python, always referring to real technical application scenarios. It demonstrates the use of physics-informed learning strategies, the incorporation of uncertainty into modeling, and the development of explainable, trustworthy artificial intelligence with the help of specialized databases.

Therefore, this textbook is aimed at students of engineering, natural science, medicine, and business administration as well as practitioners from industry (especially data scientists), developers of expert databases, and software developers.

Dr. Marcus J. Neuer has developed machine learning and explainable artificial intelligence for usable, profitable applications in various research and industry projects. He leads the research and development department at innoRIID GmbH and teaches at RWTH Aachen as well as the University of Applied Sciences for Business, FHDW. His algorithms are successfully used today in various products, including in the fields of nuclear safety and the process industry.

 

 

 

1 Introduction to Working with Data.- 2 Data as a Stochastic Process.- 3 Exploratory Analysis (Data Cleaning, Histograms, Principal Component Analysis, Mathematical Transformations).- 4 Fundamentals of Supervised and Unsupervised Learning Methods.- 5 Physics-Informed Learning Methods (Optimization Methods for Data Preprocessing, Integration of Transformatively-Enriched Data, Integration of Mathematical Models).- 6 Stochastic Learning Methods (Mixture-Density Networks, Credal Networks).- 7 Semantic Databases.- 8 Explainable, Trustworthy Artificial Intelligence.

Erscheinungsdatum
Zusatzinfo XVII, 241 p. 223 illus., 173 illus. in color.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Artificial Intelligence • Data Science • Explainable AI • learning methods • machine learning • Python • reinforced learning • stochastics • supervised learning • Unsupervised Learning
ISBN-10 3-662-69994-X / 366269994X
ISBN-13 978-3-662-69994-2 / 9783662699942
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20