Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Big Data on Kubernetes -  Neylson Crepalde

Big Data on Kubernetes (eBook)

A practical guide to building efficient and scalable data solutions
eBook Download: EPUB
2024 | 1. Auflage
296 Seiten
Packt Publishing (Verlag)
978-1-83546-899-9 (ISBN)
Systemvoraussetzungen
28,99 inkl. MwSt
(CHF 28,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

In today's data-driven world, organizations across different sectors need scalable and efficient solutions for processing large volumes of data. Kubernetes offers an open-source and cost-effective platform for deploying and managing big data tools and workloads, ensuring optimal resource utilization and minimizing operational overhead. If you want to master the art of building and deploying big data solutions using Kubernetes, then this book is for you.
Written by an experienced data specialist, Big Data on Kubernetes takes you through the entire process of developing scalable and resilient data pipelines, with a focus on practical implementation. Starting with the basics, you'll progress toward learning how to install Docker and run your first containerized applications. You'll then explore Kubernetes architecture and understand its core components. This knowledge will pave the way for exploring a variety of essential tools for big data processing such as Apache Spark and Apache Airflow. You'll also learn how to install and configure these tools on Kubernetes clusters. Throughout the book, you'll gain hands-on experience building a complete big data stack on Kubernetes.
By the end of this Kubernetes book, you'll be equipped with the skills and knowledge you need to tackle real-world big data challenges with confidence.


Gain hands-on experience in building efficient and scalable big data architecture on Kubernetes, utilizing leading technologies such as Spark, Airflow, Kafka, and Trino Key FeaturesLeverage Kubernetes in a cloud environment to integrate seamlessly with a variety of toolsExplore best practices for optimizing the performance of big data pipelinesBuild end-to-end data pipelines and discover real-world use cases using popular tools like Spark, Airflow, and KafkaPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionIn today's data-driven world, organizations across different sectors need scalable and efficient solutions for processing large volumes of data. Kubernetes offers an open-source and cost-effective platform for deploying and managing big data tools and workloads, ensuring optimal resource utilization and minimizing operational overhead. If you want to master the art of building and deploying big data solutions using Kubernetes, then this book is for you. Written by an experienced data specialist, Big Data on Kubernetes takes you through the entire process of developing scalable and resilient data pipelines, with a focus on practical implementation. Starting with the basics, you ll progress toward learning how to install Docker and run your first containerized applications. You ll then explore Kubernetes architecture and understand its core components. This knowledge will pave the way for exploring a variety of essential tools for big data processing such as Apache Spark and Apache Airflow. You ll also learn how to install and configure these tools on Kubernetes clusters. Throughout the book, you ll gain hands-on experience building a complete big data stack on Kubernetes. By the end of this Kubernetes book, you ll be equipped with the skills and knowledge you need to tackle real-world big data challenges with confidence.What you will learnInstall and use Docker to run containers and build concise imagesGain a deep understanding of Kubernetes architecture and its componentsDeploy and manage Kubernetes clusters on different cloud platformsImplement and manage data pipelines using Apache Spark and Apache AirflowDeploy and configure Apache Kafka for real-time data ingestion and processingBuild and orchestrate a complete big data pipeline using open-source toolsDeploy Generative AI applications on a Kubernetes-based architectureWho this book is forIf you re a data engineer, BI analyst, data team leader, data architect, or tech manager with a basic understanding of big data technologies, then this big data book is for you. Familiarity with the basics of Python programming, SQL queries, and YAML is required to understand the topics discussed in this book. ]]>
Erscheint lt. Verlag 19.7.2024
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
ISBN-10 1-83546-899-3 / 1835468993
ISBN-13 978-1-83546-899-9 / 9781835468999
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
CHF 48,75