Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators (eBook)

RAMSES
eBook Download: PDF
2024 | 2024
X, 259 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-55060-7 (ISBN)

Lese- und Medienproben

Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators -
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume is focused on the review of recent algorithmic and mathematical advances and the development of new research directions for Mathematical Model Approximations via RAMSES (Reduced order models, Approximation theory, Machine learning, Surrogates, Emulators, Simulators) in the setting of parametrized partial differential equations also with sparse and noisy data in high-dimensional parameter spaces.

The book is a valuable resource for researchers, as well as masters and Ph.D students.



Marta D'Elia is a Principal Scientist at Pasteur Labs and an Adjunct Professor at Stanford University (ICME). She previously worked at Meta as a Research Scientist and at Sandia National Laboratories (NM and CA) as a Principal Member of the Technical Staff. She holds a PhD in Applied Mathematics from Emory University. As a computational scientist, her work deals with the design and analysis of machine-learning models and data-driven algorithms for the simulation of complex, multiscale and multiphysics problems. In addition, she is an expert in nonlocal modeling and simulation, optimization, and uncertainty quantification. 

Max Gunzburger is the Robert Lawton and Marie Krafft Emeritus Professor and Founding Chair of the Department of Scientific Computing at Florida State University and is currently a Senior Researcher at the University of Texas at Austin.  His research interests spans the areas of numerical analysis, uncertainty quantification, nonlocal modeling, optimization and control, computational geometry,  and partial differential equations with applications in diverse areas including fluid and solid mechanics, climate, materials, subsurface flows, image processing, diffusion processes, superconductivity, acoustics, and electromagnetics.

Gianluigi Rozza received his Ph.D. in Applied Mathematics at EPF Lausanne, Switzerland, in 2006 and he is currently full professor in Numerical Analysis and Scientific Computing at SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy, where he coordinated SISSA mathLab. His research focuses on reduced order methods in computational mechanics, including uncertainty quantification, automatic learning, optimal control, inverse problems and emerging technologies like digital twin in industry.

Giovanni Stabile is assistant professor (RTD-B) in numerical analysis at the Department of Pure and Applied Sciences, Universityof Urbino, Italy. From 2016 to 2022, he was assistant professor (RTD-A) and previously postDoc at SISSA, in Trieste, Italy. He received his Ph.D. in 2016 from a joint Ph.D. school between the TU Braunschweig in Germany and the University of Florence in Italy. He is recipient of the ERC Starting Grant 'Data Aware efficient models of the urbaN microclimaTE (DANTE)'.

Erscheint lt. Verlag 24.6.2024
Reihe/Serie Lecture Notes in Computational Science and Engineering
Zusatzinfo X, 259 p. 151 illus., 148 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Approximation of PDEs • Emulators • machine learning • Model order reduction • simulators • surrogates
ISBN-10 3-031-55060-9 / 3031550609
ISBN-13 978-3-031-55060-7 / 9783031550607
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 18,25