Construct, Merge, Solve & Adapt (eBook)
XVI, 192 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-60103-3 (ISBN)
This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver.
Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem.
The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.
Christian Blum is a Senior Research Scientist at the Artificial Intelligence Research Institute (IIIA) and the Spanish National Research Council (CSIC). He is one of the most influential researchers at the intersection of Artificial Intelligence, Operations Research, Optimization, Heuristics, Natural Computing and Computational Intelligence. He is the co-editor of 'Swarm Intelligence' (Springer, 2006) and co-author of 'Hybrid Metaheuristics' (Springer, 2016).
Erscheint lt. Verlag | 18.6.2024 |
---|---|
Reihe/Serie | Computational Intelligence Methods and Applications |
Zusatzinfo | XVI, 192 p. 58 illus., 43 illus. in color. |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Bauwesen | |
Wirtschaft ► Betriebswirtschaft / Management ► Planung / Organisation | |
Wirtschaft ► Betriebswirtschaft / Management ► Unternehmensführung / Management | |
Schlagworte | Bin Packing • CMSA • combinatorial optimization • Electric vehicle routing • Exact solver • hybrid algorithms • ILP solver • Knapsack Problems • Matheuristics • Metaheuristics • Minimum common string partition • Minimum covering arborescence • minimum dominating set • Probabilistic solution construction • Self-Adaptive CMSA • Simulated annealing • variable neighborhood search • Variable-Sized Bin Packing |
ISBN-10 | 3-031-60103-3 / 3031601033 |
ISBN-13 | 978-3-031-60103-3 / 9783031601033 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich