Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Modern Graph Theory Algorithms with Python -  Colleen M. Farrelly,  Franck Kalala Mutombo

Modern Graph Theory Algorithms with Python (eBook)

Harness the power of graph algorithms and real-world network applications using Python
eBook Download: EPUB
2024
290 Seiten
Packt Publishing (Verlag)
978-1-80512-017-9 (ISBN)
Systemvoraussetzungen
32,39 inkl. MwSt
(CHF 31,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale.
This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You'll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you'll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you'll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter.
By the end of this book, you'll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.


Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key FeaturesLearn how to wrangle different types of datasets and analytics problems into networksLeverage graph theoretic algorithms to analyze data efficientlyApply the skills you gain to solve a variety of problems through case studies in PythonPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionWe are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You ll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you ll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you ll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you ll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.What you will learnTransform different data types, such as spatial data, into network formatsExplore common network science tools in PythonDiscover how geometry impacts spreading processes on networksImplement machine learning algorithms on network data featuresBuild and query graph databasesExplore new frontiers in network science such as quantum algorithmsWho this book is forIf you re a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations.]]>
Erscheint lt. Verlag 7.6.2024
Vorwort Michael Giske
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80512-017-4 / 1805120174
ISBN-13 978-1-80512-017-9 / 9781805120179
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95