Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Industrial Recommender System - Lantao Hu, Yueting Li, Guangfan Cui, Kexin Yi

Industrial Recommender System (eBook)

Principles, Technologies and Enterprise Applications
eBook Download: PDF
2024 | 2024
XV, 246 Seiten
Springer Nature Singapore (Verlag)
978-981-97-2581-6 (ISBN)
Systemvoraussetzungen
64,19 inkl. MwSt
(CHF 62,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Recommender systems, as a highly popular AI technology in recent years, have been widely applied across various industries. They have transformed the way we interact with technology, influencing our choices and shaping our experiences. This book provides a comprehensive introduction to industrial recommender systems, starting with the overview of the technical framework, gradually delving into each core module such as content understanding, user profiling, recall, ranking, re-ranking and so on, and introducing the key technologies and practices in enterprises.

The book also addresses common challenges in recommendation cold start, recommendation bias and debiasing. Additionally, it introduces advanced technologies in the field, such as reinforcement learning, causal inference.

Professionals working in the fields of recommender systems, computational advertising, and search will find this book valuable. It is also suitable for undergraduate, graduate, and doctoral students majoring in artificial intelligence, computer science, software engineering, and related disciplines. Furthermore, it caters to readers with an interest in recommender systems, providing them with an understanding of the foundational framework, insights into core technologies, and advancements in industrial recommender systems.

The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.

 



Lantao Hu, graduated from Tsinghua University, Department of Computer Science. He is currently Technical Director of Recommendation Algorithm at Kuaishou, and previously worked as a Senior Algorithm Engineer at ByteDance and a Senior Researcher at Tencent. He has extensive practical experience in the field of recommender systems and has been in charge of several large-scale industrial recommender systems, including TikTok, Kuaishou, and WeChat's 'Discover'. His main research focus in recommender systems and has published six academic papers in relevant fields and holds five patents.

Yueting Li, graduated from Dalian University of Technology with a major in Computer Science. She previously worked at Baidu participated in the development of advertising CTR prediction model and was in charge of multiple recommender systems at Xiaomi, including Music, Reading, App Store, and Game Center etc. She has extensive practical experience in the field of recommendation and advertising andhas been involved in building several recommender systems from scratch. Currently, she has transitioned to the field of smart homes, exploring the application of AI technologies such as intelligent perception and intelligent recommendation in new scenarios.

Guangfan Cui, graduated from the Institution of Software, Chinese Academy of Sciences, is an Assistant Researcher at iQiyi, responsible for the short video recommendation business. He once worked as a recommendation algorithm engineer at Xiaomi, responsible for the recommendation tasks in the App Store, Game Center, and Youpin business lines, and built the deep recommendation engine for Xiaomi's vertical domain business from scratch. His main research interests include recommendation system, computational advertising, and search system, and he has published several papers and patents.

Kexin Yi, graduated from Peking University, worked as an algorithm engineer at iQiyi and Kuaishou, mainly focusing on causal inference, interest decoupling, sequence recommendation, and sample optimization.


Recommender systems, as a highly popular AI technology in recent years, have been widely applied across various industries. They have transformed the way we interact with technology, influencing our choices and shaping our experiences. This book provides a comprehensive introduction to industrial recommender systems, starting with the overview of the technical framework, gradually delving into each core module such as content understanding, user profiling, recall, ranking, re-ranking and so on, and introducing the key technologies and practices in enterprises.The book also addresses common challenges in recommendation cold start, recommendation bias and debiasing. Additionally, it introduces advanced technologies in the field, such as reinforcement learning, causal inference.Professionals working in the fields of recommender systems, computational advertising, and search will find this book valuable. It is also suitable for undergraduate, graduate, and doctoral students majoring in artificial intelligence, computer science, software engineering, and related disciplines. Furthermore, it caters to readers with an interest in recommender systems, providing them with an understanding of the foundational framework, insights into core technologies, and advancements in industrial recommender systems.The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content. 
Erscheint lt. Verlag 31.5.2024
Zusatzinfo XV, 246 p. 184 illus., 138 illus. in color.
Sprache englisch
Original-Titel 这就是推荐系统: 核心技术原理与企业应用
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Schlagworte Artificial Intelligence • Data Science • Deep learning • machine learning • Personalized recommendation • Recommender System
ISBN-10 981-97-2581-X / 981972581X
ISBN-13 978-981-97-2581-6 / 9789819725816
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
CHF 24,40